In this work, we present an enhanced design for a Brillouin ring laser (BRL), which employs a double resonant cavity (DRC) with short fiber length, paired with a heterodyne-based wavelength-locking system, to be employed as a pump-probe source for Brillouin sensing. The enhanced source is compared to traditional long-cavity pump-probe source, showing a significantly lower relative intensity noise (~-145 dB/Hz in the whole 0–800 MHz range), a narrow linewidth (10 kHz), and large tunability features, resulting in an effective pump-probe source in BOTDA systems, with an excellent pump-probe frequency stability (~200 Hz), which is uncommon for fiber lasers. The enhanced source showed an improved signal-to-noise ratio (SNR) of about 22 dB with respect to standard BRL schemes, resulting in an improved temperature/strain resolution in BOTDA applications up to 5.5 dB, with respect to previous high-noise BRL designs.
Rossi L., Marini D., Bastianini F., Bolognini G. (2019). Analysis of enhanced-performance fibre Brillouin ring laser for Brillouin sensing applications. OPTICS EXPRESS, 27(20), 29448-29460 [10.1364/OE.27.029448].
Analysis of enhanced-performance fibre Brillouin ring laser for Brillouin sensing applications
ROSSI, LEONARDO;MARINI, DIEGO;
2019
Abstract
In this work, we present an enhanced design for a Brillouin ring laser (BRL), which employs a double resonant cavity (DRC) with short fiber length, paired with a heterodyne-based wavelength-locking system, to be employed as a pump-probe source for Brillouin sensing. The enhanced source is compared to traditional long-cavity pump-probe source, showing a significantly lower relative intensity noise (~-145 dB/Hz in the whole 0–800 MHz range), a narrow linewidth (10 kHz), and large tunability features, resulting in an effective pump-probe source in BOTDA systems, with an excellent pump-probe frequency stability (~200 Hz), which is uncommon for fiber lasers. The enhanced source showed an improved signal-to-noise ratio (SNR) of about 22 dB with respect to standard BRL schemes, resulting in an improved temperature/strain resolution in BOTDA applications up to 5.5 dB, with respect to previous high-noise BRL designs.File | Dimensione | Formato | |
---|---|---|---|
Analysis of enhanced-performance fibre Brillouin ring laser for Brillouin sensing applications.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.