A new numerical approach to determine the g-function of a borehole field with the boundary condition of uniform temperature and time-constant mean heat flux at the surface of the boreholes is presented. The method is employed to compare the g-functions obtained by this boundary condition with those obtained by the usual condition of uniform and constant heat flux, for a single borehole and for a field of six boreholes placed in two lines. Boreholes with length 150 m, diameter 15 cm, buried depth 1.5 m and mutual distance 7.5 m, for the field, are considered. The results show that the difference between the two kinds of g-functions is less than 1.5 % for a single borehole, while it reaches 8.7 % for the borehole field, at high values of time. Finally, we show that the superposition of the effects of the single boreholes yields correctly the g-function of the field in the case of uniform heat flux, but overestimates the g-function in the case of uniform temperature and constant mean heat flux.

Comparison of isothermal and isoflux g-functions for borehole-heat-exchanger fields

Naldi, C;Zanchini, E
2019

Abstract

A new numerical approach to determine the g-function of a borehole field with the boundary condition of uniform temperature and time-constant mean heat flux at the surface of the boreholes is presented. The method is employed to compare the g-functions obtained by this boundary condition with those obtained by the usual condition of uniform and constant heat flux, for a single borehole and for a field of six boreholes placed in two lines. Boreholes with length 150 m, diameter 15 cm, buried depth 1.5 m and mutual distance 7.5 m, for the field, are considered. The results show that the difference between the two kinds of g-functions is less than 1.5 % for a single borehole, while it reaches 8.7 % for the borehole field, at high values of time. Finally, we show that the superposition of the effects of the single boreholes yields correctly the g-function of the field in the case of uniform heat flux, but overestimates the g-function in the case of uniform temperature and constant mean heat flux.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/701358
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact