Background: The superfamily of adenylating enzymes is a large family of enzymes broadly distributed from bacteria to humans. Acetyl-CoA synthetase (Acs), member of this family, is a metabolic enzyme with an essential role in Escherichia coli (E. coli) acetate metabolism, whose catalytic activity is regulated by acetylation/deacetylation in vivo. Methods: In this study, the kinetics and thermodynamic parameters of deacetylated and acetylated E. coli Acs were studied for the adenylating step. Moreover, the role of the T264, K270, D500 and K609 residues in catalysis and ATP-binding was also determined by Isothermal titration calorimetry. Results: The results showed that native Acs enzyme binds ATP in an endothermic way. The dissociation constant has been determined and ATP-binding showed no significant differences between acetylated and deacetylated enzyme, although k cat was much higher for the deacetylated enzyme. However, K609 lysine mutation resulted in an increase in ATP-Acs-affinity and in a total loss of enzymatic activity, while T264 and D500 mutant proteins showed a total loss of ATP-binding ability and a decrease in catalytic activity. K609 site-specified acetylation induced a change in Acs conformation which resulted in an exothermic and more energetic ATP-binding. Conclusions: The differences in ATP-binding could explain the broadly conserved inactivation of Acs when K609 is acetylated. General Significance: The results presented in this study demonstrate the importance of the selected residues in Acs ATP-binding and represent an advance in our understanding of the adenylation step of the superfamily of adenylating enzymes and of their acetylation/deacetylation regulation.

Characterization of acetyl-CoA synthetase kinetics and ATP-binding

Zambelli B.;
2019

Abstract

Background: The superfamily of adenylating enzymes is a large family of enzymes broadly distributed from bacteria to humans. Acetyl-CoA synthetase (Acs), member of this family, is a metabolic enzyme with an essential role in Escherichia coli (E. coli) acetate metabolism, whose catalytic activity is regulated by acetylation/deacetylation in vivo. Methods: In this study, the kinetics and thermodynamic parameters of deacetylated and acetylated E. coli Acs were studied for the adenylating step. Moreover, the role of the T264, K270, D500 and K609 residues in catalysis and ATP-binding was also determined by Isothermal titration calorimetry. Results: The results showed that native Acs enzyme binds ATP in an endothermic way. The dissociation constant has been determined and ATP-binding showed no significant differences between acetylated and deacetylated enzyme, although k cat was much higher for the deacetylated enzyme. However, K609 lysine mutation resulted in an increase in ATP-Acs-affinity and in a total loss of enzymatic activity, while T264 and D500 mutant proteins showed a total loss of ATP-binding ability and a decrease in catalytic activity. K609 site-specified acetylation induced a change in Acs conformation which resulted in an exothermic and more energetic ATP-binding. Conclusions: The differences in ATP-binding could explain the broadly conserved inactivation of Acs when K609 is acetylated. General Significance: The results presented in this study demonstrate the importance of the selected residues in Acs ATP-binding and represent an advance in our understanding of the adenylation step of the superfamily of adenylating enzymes and of their acetylation/deacetylation regulation.
Gallego-Jara J.; Terol G.L.; Ecija Conesa A.; Zambelli B.; Canovas Diaz M.; de Diego Puente T.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/699953
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact