Sex dimorphism in cell response to stress has previously been investigated by different research groups. This dimorphism could be at least in part accounted for by sex-biased expression of regulatory elements such as microRNAs (miRs). In order to spot previously unknown miR expression differences we took advantage of prior knowledge on specialized databases to identify X chromosome-encoded miRs potentially escaping X chromosome inactivation (XCI). MiR-548am-5p emerged as potentially XCI escaper and was experimentally verified to be significantly up-regulated in human XX primary dermal fibroblasts (DFs) compared to XY ones. Accordingly, miR-548am-5p target mRNAs, e.g. the transcript for Bax, was differently modulated in XX and XY DFs. Functional analyses indicated that XY DFs were more prone to mitochondria-mediated apoptosis than XX ones. Experimentally induced overexpression of miR548am-5p in XY cells by lentivirus vector transduction decreased apoptosis susceptibility, whereas its down-regulation in XX cells enhanced apoptosis susceptibility. These data indicate that this approach could be used to identify previously unreported sex-biased differences in miR expression and that a miR identified with this approach, miR548am-5p, can account for sex-dependent differences observed in the susceptibility to mitochondrial apoptosis of human DFs.
Matarrese P, T.P. (2019). X-chromosome-linked miR548am-5p is a key regulator of sex disparity in the susceptibility to mitochondria-mediated apoptosis. CELL DEATH & DISEASE, 10(9), 673-684 [10.1038/s41419-019-1888-3].
X-chromosome-linked miR548am-5p is a key regulator of sex disparity in the susceptibility to mitochondria-mediated apoptosis.
Conte M;Franceschi C;Salvioli S;
2019
Abstract
Sex dimorphism in cell response to stress has previously been investigated by different research groups. This dimorphism could be at least in part accounted for by sex-biased expression of regulatory elements such as microRNAs (miRs). In order to spot previously unknown miR expression differences we took advantage of prior knowledge on specialized databases to identify X chromosome-encoded miRs potentially escaping X chromosome inactivation (XCI). MiR-548am-5p emerged as potentially XCI escaper and was experimentally verified to be significantly up-regulated in human XX primary dermal fibroblasts (DFs) compared to XY ones. Accordingly, miR-548am-5p target mRNAs, e.g. the transcript for Bax, was differently modulated in XX and XY DFs. Functional analyses indicated that XY DFs were more prone to mitochondria-mediated apoptosis than XX ones. Experimentally induced overexpression of miR548am-5p in XY cells by lentivirus vector transduction decreased apoptosis susceptibility, whereas its down-regulation in XX cells enhanced apoptosis susceptibility. These data indicate that this approach could be used to identify previously unreported sex-biased differences in miR expression and that a miR identified with this approach, miR548am-5p, can account for sex-dependent differences observed in the susceptibility to mitochondrial apoptosis of human DFs.File | Dimensione | Formato | |
---|---|---|---|
s41419-019-1888-3.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.