Pressure is a critical parameter for a large number of industrial processes. The vacuum industry relies on accurate pressure measurement and control. A new compact wireless vacuum sensor was designed and simulated and is presented in this publication. The sensor combines the Pirani principle and Surface Acoustic Waves, and it extends the vacuum sensed range to between 10-4 Pa and 105 Pa all along a complete wireless operation. A thermal analysis was performed based on gas kinetic theory, aiming to optimize the thermal conductivity and the Knudsen regime of the device. Theoretical analysis and simulation allowed designing the structure of the sensor and its dimensions to ensure the highest sensitivity through the whole sensing range and to build a model that simulates the behavior of the sensor under vacuum. A completely new design and a model simulating the behavior of the sensor from high vacuum to atmospheric pressure were established.
Toto S., Nicolay P., Morini G.L., Rapp M., Korvink J.G., Brandner J.J. (2019). Design and Simulation of a Wireless SAW-Pirani Sensor with Extended Range and Sensitivity. SENSORS, 19(10), 1-17 [10.3390/s19102421].
Design and Simulation of a Wireless SAW-Pirani Sensor with Extended Range and Sensitivity
Morini G. L.;
2019
Abstract
Pressure is a critical parameter for a large number of industrial processes. The vacuum industry relies on accurate pressure measurement and control. A new compact wireless vacuum sensor was designed and simulated and is presented in this publication. The sensor combines the Pirani principle and Surface Acoustic Waves, and it extends the vacuum sensed range to between 10-4 Pa and 105 Pa all along a complete wireless operation. A thermal analysis was performed based on gas kinetic theory, aiming to optimize the thermal conductivity and the Knudsen regime of the device. Theoretical analysis and simulation allowed designing the structure of the sensor and its dimensions to ensure the highest sensitivity through the whole sensing range and to build a model that simulates the behavior of the sensor under vacuum. A completely new design and a model simulating the behavior of the sensor from high vacuum to atmospheric pressure were established.File | Dimensione | Formato | |
---|---|---|---|
SEN19a.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.