The standard version of the game Rock-Paper-Scissors is interesting in terms of game theory, but less so in terms of Statistics. However, we show that with a small rule change it can be made into an interactive exercise for degree-level students of Statistics that leads to a Bayesian change-point model, for which the Gibbs sampler provides an intuitive method of inference. First, students play the game to generate the data. Second, they are encouraged to formulate a model that reflects their experience from having played the game. And third, they participate in the development of a suitable MCMC algorithm to fit the model.

A statistical learning exercise based on a modified Rock-Paper-Scissors game

Paola Bortot
Methodology
;
2019

Abstract

The standard version of the game Rock-Paper-Scissors is interesting in terms of game theory, but less so in terms of Statistics. However, we show that with a small rule change it can be made into an interactive exercise for degree-level students of Statistics that leads to a Bayesian change-point model, for which the Gibbs sampler provides an intuitive method of inference. First, students play the game to generate the data. Second, they are encouraged to formulate a model that reflects their experience from having played the game. And third, they participate in the development of a suitable MCMC algorithm to fit the model.
2019
Paola Bortot, Stuart Coles
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/697876
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact