We prove a local limit theorem for the probability of a site to be connected by disjoint paths to three points in subcritical Bernoulli percolation on Z^d, d ge 2, in the limit where their distances tend to infinity.

M. Campanino, M. Gianfelice (2009). A local limit theorem for triple connections in subcritical Bernoulli percolation. PROBABILITY THEORY AND RELATED FIELDS, 143, 353-378 [10.1007/s00440-007-0129-3].

A local limit theorem for triple connections in subcritical Bernoulli percolation

CAMPANINO, MASSIMO;
2009

Abstract

We prove a local limit theorem for the probability of a site to be connected by disjoint paths to three points in subcritical Bernoulli percolation on Z^d, d ge 2, in the limit where their distances tend to infinity.
2009
M. Campanino, M. Gianfelice (2009). A local limit theorem for triple connections in subcritical Bernoulli percolation. PROBABILITY THEORY AND RELATED FIELDS, 143, 353-378 [10.1007/s00440-007-0129-3].
M. Campanino; M. Gianfelice
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/69668
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact