The combination of galaxy-galaxy lensing (GGL) and redshift space distortion of galaxy clustering (RSD) is a privileged technique to test general relativity predictions and break degeneracies between the growth rate of structure parameter f and the amplitude of the linear power spectrum sigma(8). We performed a joint GGL and RSD analysis on 250 sq. deg using shape catalogues from CFHTLenS and CFHT-Stripe 82 and spectroscopic redshifts from the BOSS CMASS sample. We adjusted a model that includes non-linear biasing, RSD, and Alcock-Paczynski effects. We used an N-body simulation supplemented by an abundance matching prescription for CMASS galaxies to build a set of overlapping lensing and clustering mocks. Together with additional spectroscopic data, this helps us to quantify and correct several systematic errors, such as photometric redshifts. We find f (z = 0.57) = 0.95 +/- 0.23, sigma(8)(z = 0.57) = 0.55 +/- 0.07 and Omega(m) = 0.31 +/- 0.08, in agreement with Planck cosmological results 2018. We also estimate the probe of gravity E-G = 0.43 +/- 0.10, in agreement with Lambda CDM-GR predictions of E-G = 0.40. This analysis reveals that RSD efficiently decreases the GGL uncertainty on Omega(m) by a factor of 4 and by 30% on sigma(8). We make our mock catalogues available on the Skies and Universe database.

Jullo E., De La Torre S., Cousinou M.-C., Escoffier S., Giocoli C., Metcalf R.B., et al. (2019). Testing gravity with galaxy-galaxy lensing and redshift-space distortions using CFHT-Stripe 82, CFHTLenS, and BOSS CMASS datasets. ASTRONOMY & ASTROPHYSICS, 627, A137-A154 [10.1051/0004-6361/201834629].

Testing gravity with galaxy-galaxy lensing and redshift-space distortions using CFHT-Stripe 82, CFHTLenS, and BOSS CMASS datasets

Giocoli C.;Metcalf R. B.;
2019

Abstract

The combination of galaxy-galaxy lensing (GGL) and redshift space distortion of galaxy clustering (RSD) is a privileged technique to test general relativity predictions and break degeneracies between the growth rate of structure parameter f and the amplitude of the linear power spectrum sigma(8). We performed a joint GGL and RSD analysis on 250 sq. deg using shape catalogues from CFHTLenS and CFHT-Stripe 82 and spectroscopic redshifts from the BOSS CMASS sample. We adjusted a model that includes non-linear biasing, RSD, and Alcock-Paczynski effects. We used an N-body simulation supplemented by an abundance matching prescription for CMASS galaxies to build a set of overlapping lensing and clustering mocks. Together with additional spectroscopic data, this helps us to quantify and correct several systematic errors, such as photometric redshifts. We find f (z = 0.57) = 0.95 +/- 0.23, sigma(8)(z = 0.57) = 0.55 +/- 0.07 and Omega(m) = 0.31 +/- 0.08, in agreement with Planck cosmological results 2018. We also estimate the probe of gravity E-G = 0.43 +/- 0.10, in agreement with Lambda CDM-GR predictions of E-G = 0.40. This analysis reveals that RSD efficiently decreases the GGL uncertainty on Omega(m) by a factor of 4 and by 30% on sigma(8). We make our mock catalogues available on the Skies and Universe database.
2019
Jullo E., De La Torre S., Cousinou M.-C., Escoffier S., Giocoli C., Metcalf R.B., et al. (2019). Testing gravity with galaxy-galaxy lensing and redshift-space distortions using CFHT-Stripe 82, CFHTLenS, and BOSS CMASS datasets. ASTRONOMY & ASTROPHYSICS, 627, A137-A154 [10.1051/0004-6361/201834629].
Jullo E.; De La Torre S.; Cousinou M.-C.; Escoffier S.; Giocoli C.; Metcalf R.B.; Comparat J.; Shan H.-Y.; Makler M.; Kneib J.-P.; Prada F.; Yepes G.;...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/695119
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact