Background: A classification tree model (CT-PIRP) was developed in 2013 to predict the annual renal function decline of patients with chronic kidney disease (CKD) participating in the PIRP (Progetto Insufficienza Renale Progressiva) project, which involves thirteen Nephrology Hospital Units in Emilia-Romagna (Italy). This model identified seven subgroups with specific combinations of baseline characteristics that were associated with a differential estimated glomerular filtration rate (eGFR) annual decline, but the model's ability to predict mortality and renal replacement therapy (RRT) has not been established yet. Methods: Survival analysis was used to determine whether CT-PIRP subgroups identified in the derivation cohort (n = 2265) had different mortality and RRT risks. Temporal validation was performed in a matched cohort (n = 2051) of subsequently enrolled PIRP patients, in which discrimination and calibration were assessed using Kaplan-Meier survival curves, Cox regression and Fine & Gray competing risk modeling. Results: In both cohorts mortality risk was higher for subgroups 3 (proteinuric, low eGFR, high serum phosphate) and lower for subgroups 1 (proteinuric, high eGFR), 4 (non-proteinuric, younger, non-diabetic) and 5 (non-proteinuric, younger, diabetic). Risk of RRT was higher for subgroups 3 and 2 (proteinuric, low eGFR, low serum phosphate), while subgroups 1, 6 (non-proteinuric, old females) and 7 (non-proteinuric, old males) showed lower risk. Calibration was excellent for mortality in all subgroups while for RRT it was overall good except in subgroups 4 and 5. Conclusions: The CT-PIRP model is a temporally validated prediction tool for mortality and RRT, based on variables routinely collected, that could assist decision-making regarding the treatment of incident CKD patients. External validation in other CKD populations is needed to determine its generalizability.

Temporal validation of the CT-PIRP prognostic model for mortality and renal replacement therapy initiation in chronic kidney disease patients

Gibertoni D.
Methodology
;
Rucci P.
Methodology
;
Mandreoli M.
Conceptualization
;
2019

Abstract

Background: A classification tree model (CT-PIRP) was developed in 2013 to predict the annual renal function decline of patients with chronic kidney disease (CKD) participating in the PIRP (Progetto Insufficienza Renale Progressiva) project, which involves thirteen Nephrology Hospital Units in Emilia-Romagna (Italy). This model identified seven subgroups with specific combinations of baseline characteristics that were associated with a differential estimated glomerular filtration rate (eGFR) annual decline, but the model's ability to predict mortality and renal replacement therapy (RRT) has not been established yet. Methods: Survival analysis was used to determine whether CT-PIRP subgroups identified in the derivation cohort (n = 2265) had different mortality and RRT risks. Temporal validation was performed in a matched cohort (n = 2051) of subsequently enrolled PIRP patients, in which discrimination and calibration were assessed using Kaplan-Meier survival curves, Cox regression and Fine & Gray competing risk modeling. Results: In both cohorts mortality risk was higher for subgroups 3 (proteinuric, low eGFR, high serum phosphate) and lower for subgroups 1 (proteinuric, high eGFR), 4 (non-proteinuric, younger, non-diabetic) and 5 (non-proteinuric, younger, diabetic). Risk of RRT was higher for subgroups 3 and 2 (proteinuric, low eGFR, low serum phosphate), while subgroups 1, 6 (non-proteinuric, old females) and 7 (non-proteinuric, old males) showed lower risk. Calibration was excellent for mortality in all subgroups while for RRT it was overall good except in subgroups 4 and 5. Conclusions: The CT-PIRP model is a temporally validated prediction tool for mortality and RRT, based on variables routinely collected, that could assist decision-making regarding the treatment of incident CKD patients. External validation in other CKD populations is needed to determine its generalizability.
Gibertoni D.; Rucci P.; Mandreoli M.; Corradini M.; Martelli D.; Russo G.; Mancini E.; Santoro A.
File in questo prodotto:
File Dimensione Formato  
Gibertoni_et_al-2019-BMC_Nephrology.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/694618
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact