Background: Movement disorders (MDs) are increasingly being managed with deep brain stimulation (DBS). High-quality economic evaluations (EEs) are necessary to evaluate the cost-effectiveness of DBS. We conducted a systematic review of published EEs of the treatment of MDs with DBS. The review compares and contrasts the reported incremental cost-effectiveness ratios (ICERs) and methodology employed by trial-based evaluations (TBEs) and model-based evaluations (MBEs). Methods: MeSH and search terms relevant to “MDs,” “DBS,” and “EEs” were used to search biomedical and economics databases. Studies that used a comparative design to evaluate DBS, including before-after studies, were included. Quality and reporting assessments were conducted independently by 2 authors. Seventeen studies that targeted Parkinson's disease (PD), dystonia, and essential tremor (ET), met our selection criteria. Results: Mean scores for methodological and reporting quality were 73% and 76%, respectively. The ICERs for DBS compared with best medical therapy to treat PD patients obtained from MBEs had a lower mean and range compared with those obtained from TBEs ($55,461–$735,192 per quality-adjusted life-year [QALY] vs. $9,301–$65,111 per QALY). Pre-post ICER for DBS to treat dystonia was $64,742 per QALY. DBS was not cost-effective in treating ET compared with focused-ultrasound surgery. Cost-effectiveness outcomes were sensitive to assumptions in health utilities, surgical costs, battery life-span, model time horizons, and the discount rate. Conclusions: The infrequent use of randomized, controlled trials to evaluate DBS efficacy, the paucity of data reporting the long-term effectiveness and/or utility of DBS, and the uncertainty surrounding cost data limit our ability to report cost-effectiveness summaries that are robust.
Dang T.T.H., Rowell D., Connelly L.B. (2019). Cost-Effectiveness of Deep Brain Stimulation With Movement Disorders: A Systematic Review. MOVEMENT DISORDERS CLINICAL PRACTICE, 6(5), 348-358 [10.1002/mdc3.12780].
Cost-Effectiveness of Deep Brain Stimulation With Movement Disorders: A Systematic Review
Connelly L. B.
2019
Abstract
Background: Movement disorders (MDs) are increasingly being managed with deep brain stimulation (DBS). High-quality economic evaluations (EEs) are necessary to evaluate the cost-effectiveness of DBS. We conducted a systematic review of published EEs of the treatment of MDs with DBS. The review compares and contrasts the reported incremental cost-effectiveness ratios (ICERs) and methodology employed by trial-based evaluations (TBEs) and model-based evaluations (MBEs). Methods: MeSH and search terms relevant to “MDs,” “DBS,” and “EEs” were used to search biomedical and economics databases. Studies that used a comparative design to evaluate DBS, including before-after studies, were included. Quality and reporting assessments were conducted independently by 2 authors. Seventeen studies that targeted Parkinson's disease (PD), dystonia, and essential tremor (ET), met our selection criteria. Results: Mean scores for methodological and reporting quality were 73% and 76%, respectively. The ICERs for DBS compared with best medical therapy to treat PD patients obtained from MBEs had a lower mean and range compared with those obtained from TBEs ($55,461–$735,192 per quality-adjusted life-year [QALY] vs. $9,301–$65,111 per QALY). Pre-post ICER for DBS to treat dystonia was $64,742 per QALY. DBS was not cost-effective in treating ET compared with focused-ultrasound surgery. Cost-effectiveness outcomes were sensitive to assumptions in health utilities, surgical costs, battery life-span, model time horizons, and the discount rate. Conclusions: The infrequent use of randomized, controlled trials to evaluate DBS efficacy, the paucity of data reporting the long-term effectiveness and/or utility of DBS, and the uncertainty surrounding cost data limit our ability to report cost-effectiveness summaries that are robust.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.