We report on the fabrication and electro-mechanical characterization of a nanocomposite system exhibiting anisotropic electrical response under the application of tactile compressive stresses (5 kPa) at low frequencies (0.1-1 Hz). The nanocomposite is based on a chemically cross-linked gel incorporating a highly conductive ionic liquid and surface functionalized barium titanate (BaTiO 3 ) ferroelectric nanoparticles. The system was engineered to respond to mechanical stimulations by combining piezoionic and piezoelectric activity, generating electric charge due to a redistribution of the mobile ions across the polymer matrix and to the presence of the electrically polarized ceramic nanoparticles, respectively. The nanocomposite response was characterized in a quasi-static regime using a custom-designed apparatus. The results obtained showed that the combination of both piezo-effects led to output voltages up to 8 mV and anisotropy in the response. This allows to discriminate the sample orientation with respect to the load direction by monitoring the phase and amplitude modulation of the output signal. The integration of cluster-assembled gold electrodes produced by Supersonic Cluster Beam Deposition (SCBD) was also performed, enabling to enhance the charge transduction efficiency by a factor of 10, compared to the bare nanocomposite. This smart piezoionic/piezoelectric nanocomposite represents an interesting solution for the development of soft devices for discriminative touch sensing and objects localization in physically unstructured environments.

Villa S.M., Mazzola V.M., Santaniello T., Locatelli E., Maturi M., Migliorini L., et al. (2019). Soft Piezoionic/Piezoelectric Nanocomposites Based on Ionogel/BaTiO 3 Nanoparticles for Low Frequency and Directional Discriminative Pressure Sensing. ACS MACRO LETTERS, 8(4), 414-420 [10.1021/acsmacrolett.8b01011].

Soft Piezoionic/Piezoelectric Nanocomposites Based on Ionogel/BaTiO 3 Nanoparticles for Low Frequency and Directional Discriminative Pressure Sensing

Locatelli E.
Membro del Collaboration Group
;
Maturi M.;Monaco I.
Membro del Collaboration Group
;
Comes Franchini M.;
2019

Abstract

We report on the fabrication and electro-mechanical characterization of a nanocomposite system exhibiting anisotropic electrical response under the application of tactile compressive stresses (5 kPa) at low frequencies (0.1-1 Hz). The nanocomposite is based on a chemically cross-linked gel incorporating a highly conductive ionic liquid and surface functionalized barium titanate (BaTiO 3 ) ferroelectric nanoparticles. The system was engineered to respond to mechanical stimulations by combining piezoionic and piezoelectric activity, generating electric charge due to a redistribution of the mobile ions across the polymer matrix and to the presence of the electrically polarized ceramic nanoparticles, respectively. The nanocomposite response was characterized in a quasi-static regime using a custom-designed apparatus. The results obtained showed that the combination of both piezo-effects led to output voltages up to 8 mV and anisotropy in the response. This allows to discriminate the sample orientation with respect to the load direction by monitoring the phase and amplitude modulation of the output signal. The integration of cluster-assembled gold electrodes produced by Supersonic Cluster Beam Deposition (SCBD) was also performed, enabling to enhance the charge transduction efficiency by a factor of 10, compared to the bare nanocomposite. This smart piezoionic/piezoelectric nanocomposite represents an interesting solution for the development of soft devices for discriminative touch sensing and objects localization in physically unstructured environments.
2019
Villa S.M., Mazzola V.M., Santaniello T., Locatelli E., Maturi M., Migliorini L., et al. (2019). Soft Piezoionic/Piezoelectric Nanocomposites Based on Ionogel/BaTiO 3 Nanoparticles for Low Frequency and Directional Discriminative Pressure Sensing. ACS MACRO LETTERS, 8(4), 414-420 [10.1021/acsmacrolett.8b01011].
Villa S.M.; Mazzola V.M.; Santaniello T.; Locatelli E.; Maturi M.; Migliorini L.; Monaco I.; Lenardi C.; Comes Franchini M.; Milani P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/691093
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 63
social impact