We prove that half spaces are the only stable nonlocal s-minimal cones in ℝ 3, for s ϵ (0, 1) sufficiently close to 1. This is the first classification result of stable s-minimal cones in dimension higher than two. Its proof cannot rely on a compactness argument perturbing from s = 1 s=1. In fact, our proof gives a quantifiable value for the required closeness of s to 1. We use the geometric formula for the second variation of the fractional s-perimeter, which involves a squared nonlocal second fundamental form, as well as the recent BV estimates for stable nonlocal minimal sets.

Stable s-minimal cones in ℝ 3 are flat for s ∼ 1

Cabre X.
Conceptualization
;
Cinti E.;
2020

Abstract

We prove that half spaces are the only stable nonlocal s-minimal cones in ℝ 3, for s ϵ (0, 1) sufficiently close to 1. This is the first classification result of stable s-minimal cones in dimension higher than two. Its proof cannot rely on a compactness argument perturbing from s = 1 s=1. In fact, our proof gives a quantifiable value for the required closeness of s to 1. We use the geometric formula for the second variation of the fractional s-perimeter, which involves a squared nonlocal second fundamental form, as well as the recent BV estimates for stable nonlocal minimal sets.
File in questo prodotto:
File Dimensione Formato  
cones_subm-REV.pdf

accesso aperto

Tipo: Preprint
Licenza: Licenza per Accesso Aperto. Creative Commons Universal – Donazione al Pubblico Dominio (CC0 1.0)
Dimensione 397.2 kB
Formato Adobe PDF
397.2 kB Adobe PDF Visualizza/Apri
Journal-für-die-reine-CintiXavierSerra.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 361.88 kB
Formato Adobe PDF
361.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/689642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 11
social impact