A series of bisnaphthalimide derivatives were synthesized and evaluated for growth-inhibitory property against HT-29 human colon carcinoma. The N,N'-bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]propane-2-ethanediamine (9) and the N,N'-Bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]butylaminoethyl]-2-propanediamine (12) derivatives emerged as the most potent compounds of this series. Molecular modelling studies indicated that the high potency of 12, the most cytotoxic compound of the whole series, could be due to larger number of intermolecular interactions and to the best position of the naphthalimido rings, which favours pi-pi stacking interactions with purine and pyrimidine bases in the DNA active site. Moreover, 12 was designed as a DNA topoisomerase II poison and biochemical studies showed its effect on human DNA topoisomerase II. We then selected the compounds with a significant cytotoxicity for apoptosis assay. Derivative 9 was able to induce significantly apoptosis (40%) at 0.1 microM concentration, and we demonstrated that the effect on apoptosis in HT-29 cells is mediated by caspases activation.

Filosa R., Peduto A., Micco S.D., Caprariis P.D., Festa M., Petrella A., et al. (2009). Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors. BIOORGANIC & MEDICINAL CHEMISTRY, 17, 13-24 [10.1016/j.bmc.2008.11.024].

Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors.

CAPRANICO, GIOVANNI;
2009

Abstract

A series of bisnaphthalimide derivatives were synthesized and evaluated for growth-inhibitory property against HT-29 human colon carcinoma. The N,N'-bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]propane-2-ethanediamine (9) and the N,N'-Bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]butylaminoethyl]-2-propanediamine (12) derivatives emerged as the most potent compounds of this series. Molecular modelling studies indicated that the high potency of 12, the most cytotoxic compound of the whole series, could be due to larger number of intermolecular interactions and to the best position of the naphthalimido rings, which favours pi-pi stacking interactions with purine and pyrimidine bases in the DNA active site. Moreover, 12 was designed as a DNA topoisomerase II poison and biochemical studies showed its effect on human DNA topoisomerase II. We then selected the compounds with a significant cytotoxicity for apoptosis assay. Derivative 9 was able to induce significantly apoptosis (40%) at 0.1 microM concentration, and we demonstrated that the effect on apoptosis in HT-29 cells is mediated by caspases activation.
2009
Filosa R., Peduto A., Micco S.D., Caprariis P.D., Festa M., Petrella A., et al. (2009). Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors. BIOORGANIC & MEDICINAL CHEMISTRY, 17, 13-24 [10.1016/j.bmc.2008.11.024].
Filosa R.; Peduto A.; Micco S.D.; Caprariis P.D.; Festa M.; Petrella A.; Capranico G.; Bifulco G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/68951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 113
social impact