A procedure for the selection of the optimal adsorbent for phenolic compounds (PC) recovery from PC-rich wastes and wastewaters was innovatively proposed and applied to compare 4 neutral resins (Amberlite XAD16N, Optipore SD-2, Amberlite FPX66, Amberlite XAD761) and 1 ion-exchange resin (Amberlite IRA958 Cl) for PC recovery from a Tunisian olive mill wastewater (OMW). In the initial batch isotherm tests a neutral resin (XAD16N) performed best thanks to its high PC sorption capacity (81 mgPC/gdry resin) and PC content in the sorbed product (0.19 gPC/gvolatile solids). Also ion-exchange resin IRA958, used in OH form in this work, resulted interesting thanks to its satisfactory performances and very low cost (8 €/L). These two pre-selected resins were further compared by means of continuous-flow adsorption/desorption tests conducted in a 1-m packed column. The results indicate that if a low (20%) breakpoint is selected, XAD16N leads to a PC-richer sorbed product (0.14 gPC/gvolatile solids) and a higher operating capacity (0.30) than IRA958. Conversely, if a very high (90%) breakpoint is selected, the two resins produce similar desorbed products in terms of both PC content (0.19–0.21 gPC/gvolatile solids) and antioxidant capacity (4.6–4.9 gascorbic acid equivalent/gPC). Resin-specific dynamic desorption procedures led to very high PC desorption yields (87–95%). The identification of the actual PCs present in the final desorbed product indicated for XAD16N a higher capacity to preserve the integrity of the PC mixture of the studied OMW. OMW microfiltration (0.2 μm pore-size) led to a 99.8% suspended solid removal – thus protecting the packed column from potential clogging – with a very low PC loss.

Frascari, D., Rubertelli, G., Arous, F., Ragini, A., Bresciani, L., Arzu, A., et al. (2019). Valorisation of olive mill wastewater by phenolic compounds adsorption: Development and application of a procedure for adsorbent selection. CHEMICAL ENGINEERING JOURNAL, 360, 124-138 [10.1016/j.cej.2018.11.188].

Valorisation of olive mill wastewater by phenolic compounds adsorption: Development and application of a procedure for adsorbent selection

Frascari, Dario
;
RUBERTELLI, GIORGIA;RAGINI, ALESSANDRO;Pinelli, Davide
2019

Abstract

A procedure for the selection of the optimal adsorbent for phenolic compounds (PC) recovery from PC-rich wastes and wastewaters was innovatively proposed and applied to compare 4 neutral resins (Amberlite XAD16N, Optipore SD-2, Amberlite FPX66, Amberlite XAD761) and 1 ion-exchange resin (Amberlite IRA958 Cl) for PC recovery from a Tunisian olive mill wastewater (OMW). In the initial batch isotherm tests a neutral resin (XAD16N) performed best thanks to its high PC sorption capacity (81 mgPC/gdry resin) and PC content in the sorbed product (0.19 gPC/gvolatile solids). Also ion-exchange resin IRA958, used in OH form in this work, resulted interesting thanks to its satisfactory performances and very low cost (8 €/L). These two pre-selected resins were further compared by means of continuous-flow adsorption/desorption tests conducted in a 1-m packed column. The results indicate that if a low (20%) breakpoint is selected, XAD16N leads to a PC-richer sorbed product (0.14 gPC/gvolatile solids) and a higher operating capacity (0.30) than IRA958. Conversely, if a very high (90%) breakpoint is selected, the two resins produce similar desorbed products in terms of both PC content (0.19–0.21 gPC/gvolatile solids) and antioxidant capacity (4.6–4.9 gascorbic acid equivalent/gPC). Resin-specific dynamic desorption procedures led to very high PC desorption yields (87–95%). The identification of the actual PCs present in the final desorbed product indicated for XAD16N a higher capacity to preserve the integrity of the PC mixture of the studied OMW. OMW microfiltration (0.2 μm pore-size) led to a 99.8% suspended solid removal – thus protecting the packed column from potential clogging – with a very low PC loss.
2019
Frascari, D., Rubertelli, G., Arous, F., Ragini, A., Bresciani, L., Arzu, A., et al. (2019). Valorisation of olive mill wastewater by phenolic compounds adsorption: Development and application of a procedure for adsorbent selection. CHEMICAL ENGINEERING JOURNAL, 360, 124-138 [10.1016/j.cej.2018.11.188].
Frascari, Dario*; Rubertelli, Giorgia; Arous, Fatma; Ragini, Alessandro; Bresciani, Letizia; Arzu, Antonio; Pinelli, Davide
File in questo prodotto:
File Dimensione Formato  
Frascari 2019-resin selection-CEJ-AAM.pdf

Open Access dal 25/11/2020

Descrizione: Versione post print dell'articolo+supplementary material
Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/689401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 34
social impact