Chronic tendinopathy is a painful common condition affecting athletes as well as the general population undergoing to tendon overuse. Although its huge prevalence, little is known about tendinopathy pathogenesis, and even cloudier is its treatment. Traditionally, tendinopathy has been defined as a lack of tendon ability to overcome stressing stimuli with appropriate adaptive changes. Histologic studies have demonstrated the absence of inflammatory infiltrates, as a consequence conventional antinflammatory drugs have shown little or no effectiveness in treating tendinopathies. New strategies should be therefore identified to address chronic tendon disorders. Angiofibroblastic changes have been highlighted as the main feature of tendinopathy, and vascular endothelial growth factor (VEGF) has been demonstrated as one of the key molecules involved in vascular hyperplasia. More recently, attention has been focused on new peptides such as Substance P, nitric oxide, and calcitonin gene-related peptide (CGRP). Those new findings support the idea of a nerve-mediated disregulation of tendon metabolism. Each of those molecules could be a target for new treatment options. This study aimed to systematically review the current available clinical and basic science in order to summarize the latest evidences on the pathophysiology and its effect on treatment of chronic tendinopathy, and to spread suggestions for future research on its treatment.

Role of VEGF, Nitric Oxide, and Sympathetic Neurotransmitters in the Pathogenesis of Tendinopathy: A Review of the Current Evidences / Vasta, Sebastiano; Di Martino, Alberto; Zampogna, Biagio; Torre, Guglielmo; Papalia, Rocco; Denaro, Vincenzo. - In: FRONTIERS IN AGING NEUROSCIENCE. - ISSN 1663-4365. - ELETTRONICO. - 8:(2016), pp. 186.1-186.11. [10.3389/fnagi.2016.00186]

Role of VEGF, Nitric Oxide, and Sympathetic Neurotransmitters in the Pathogenesis of Tendinopathy: A Review of the Current Evidences

Di Martino, Alberto
;
2016

Abstract

Chronic tendinopathy is a painful common condition affecting athletes as well as the general population undergoing to tendon overuse. Although its huge prevalence, little is known about tendinopathy pathogenesis, and even cloudier is its treatment. Traditionally, tendinopathy has been defined as a lack of tendon ability to overcome stressing stimuli with appropriate adaptive changes. Histologic studies have demonstrated the absence of inflammatory infiltrates, as a consequence conventional antinflammatory drugs have shown little or no effectiveness in treating tendinopathies. New strategies should be therefore identified to address chronic tendon disorders. Angiofibroblastic changes have been highlighted as the main feature of tendinopathy, and vascular endothelial growth factor (VEGF) has been demonstrated as one of the key molecules involved in vascular hyperplasia. More recently, attention has been focused on new peptides such as Substance P, nitric oxide, and calcitonin gene-related peptide (CGRP). Those new findings support the idea of a nerve-mediated disregulation of tendon metabolism. Each of those molecules could be a target for new treatment options. This study aimed to systematically review the current available clinical and basic science in order to summarize the latest evidences on the pathophysiology and its effect on treatment of chronic tendinopathy, and to spread suggestions for future research on its treatment.
2016
Role of VEGF, Nitric Oxide, and Sympathetic Neurotransmitters in the Pathogenesis of Tendinopathy: A Review of the Current Evidences / Vasta, Sebastiano; Di Martino, Alberto; Zampogna, Biagio; Torre, Guglielmo; Papalia, Rocco; Denaro, Vincenzo. - In: FRONTIERS IN AGING NEUROSCIENCE. - ISSN 1663-4365. - ELETTRONICO. - 8:(2016), pp. 186.1-186.11. [10.3389/fnagi.2016.00186]
Vasta, Sebastiano; Di Martino, Alberto; Zampogna, Biagio; Torre, Guglielmo; Papalia, Rocco; Denaro, Vincenzo
File in questo prodotto:
File Dimensione Formato  
frontiers_tendinopathy.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 647.02 kB
Formato Adobe PDF
647.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/687602
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact