Folate-dependent one-carbon cycle metabolism (FOCM) plays a critical role in maintaining genomic stability through regulating DNA biosynthesis, repair and methylation. Folate metabolites as well as other metabolites in the FOCM are hypothesized to be altered when cells transition from normal to cancerous state. Using cells at different stages in their development into colorectal cancer, the FOCM metabolites were profiled as an effort to phenotype the cells, and the metabolite levels were compared to the expressions of related genes. Here, we investigate whether there is a correlation between the metabolite levels, DNA methylation levels and the expression of the related genes that drive the levels of these metabolites. Using CRL1459, APC10.1, HCT116 and Caco-2, we show for the first time that FOCM metabolites correlate with the gene expression patterns. These differences follow a trend that may facilitate distinguishing colon cells at the different stages as they transition into cancerous state. The folate distribution and methionine levels were found to be key in determining the staging of the colon cells in CRC development. Also, expression of CBS, MTRR and MAT genes may facilitate distinguishing between untransformed and transformed colon cells.

Asante, I., Chui, D., Pei, H., Zhou, E., De Giovanni, C., Conti, D., et al. (2019). Alterations in folate-dependent one-carbon metabolism as colon cell transition from normal to cancerous. JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 69, 1-9 [10.1016/j.jnutbio.2019.02.008].

Alterations in folate-dependent one-carbon metabolism as colon cell transition from normal to cancerous

De Giovanni, C.;
2019

Abstract

Folate-dependent one-carbon cycle metabolism (FOCM) plays a critical role in maintaining genomic stability through regulating DNA biosynthesis, repair and methylation. Folate metabolites as well as other metabolites in the FOCM are hypothesized to be altered when cells transition from normal to cancerous state. Using cells at different stages in their development into colorectal cancer, the FOCM metabolites were profiled as an effort to phenotype the cells, and the metabolite levels were compared to the expressions of related genes. Here, we investigate whether there is a correlation between the metabolite levels, DNA methylation levels and the expression of the related genes that drive the levels of these metabolites. Using CRL1459, APC10.1, HCT116 and Caco-2, we show for the first time that FOCM metabolites correlate with the gene expression patterns. These differences follow a trend that may facilitate distinguishing colon cells at the different stages as they transition into cancerous state. The folate distribution and methionine levels were found to be key in determining the staging of the colon cells in CRC development. Also, expression of CBS, MTRR and MAT genes may facilitate distinguishing between untransformed and transformed colon cells.
2019
Asante, I., Chui, D., Pei, H., Zhou, E., De Giovanni, C., Conti, D., et al. (2019). Alterations in folate-dependent one-carbon metabolism as colon cell transition from normal to cancerous. JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 69, 1-9 [10.1016/j.jnutbio.2019.02.008].
Asante, I.; Chui, D.; Pei, H.; Zhou, E.; De Giovanni, C.; Conti, D.; Louie, S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/685654
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact