This paper introduces PrOnto, the privacy ontology that models the GDPR main conceptual cores: data types and documents, agents and roles, processing purposes, legal bases, processing operations, and deontic operations for modelling rights and duties. The explicit goal of PrOnto is to support legal reasoning and compliance checking by employing defeasible logic theory (i.e., the LegalRuleML standard and the SPINDle engine).

Legal Ontology for Modelling GDPR Concepts and Norms / Monica Palmirani; Michele Martoni; Arianna Rossi; Cesare Bartolini; Livio Robaldo. - ELETTRONICO. - 313:(2018), pp. 91-100. (Intervento presentato al convegno 31st International Conference on Legal Knowledge and Information Systems, JURIX 2018 tenutosi a Groningen nel 12-14 dicembre 2018) [10.3233/978-1-61499-935-5-91].

Legal Ontology for Modelling GDPR Concepts and Norms

Monica Palmirani
;
Michele Martoni;Arianna Rossi;
2018

Abstract

This paper introduces PrOnto, the privacy ontology that models the GDPR main conceptual cores: data types and documents, agents and roles, processing purposes, legal bases, processing operations, and deontic operations for modelling rights and duties. The explicit goal of PrOnto is to support legal reasoning and compliance checking by employing defeasible logic theory (i.e., the LegalRuleML standard and the SPINDle engine).
2018
Legal Knowledge and Information Systems. JURIX 2018. 31st International Conference on Legal Knowledge and Information Systems
91
100
Legal Ontology for Modelling GDPR Concepts and Norms / Monica Palmirani; Michele Martoni; Arianna Rossi; Cesare Bartolini; Livio Robaldo. - ELETTRONICO. - 313:(2018), pp. 91-100. (Intervento presentato al convegno 31st International Conference on Legal Knowledge and Information Systems, JURIX 2018 tenutosi a Groningen nel 12-14 dicembre 2018) [10.3233/978-1-61499-935-5-91].
Monica Palmirani; Michele Martoni; Arianna Rossi; Cesare Bartolini; Livio Robaldo
File in questo prodotto:
File Dimensione Formato  
FAIA313-0091.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 300.74 kB
Formato Adobe PDF
300.74 kB Adobe PDF Visualizza/Apri
Scan_0003.pdf

accesso aperto

Descrizione: attribuzioni
Tipo: File Supplementare
Licenza: Licenza per accesso libero gratuito
Dimensione 188.77 kB
Formato Adobe PDF
188.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/684973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 37
social impact