Aggregation induced emission is a very interesting phenomenon that recently has attracted a lot of interest. Most of the examples deal with organic molecules or flat metal complexes. Here we demonstrate that, by design, even iridium compounds can display this process without shifting the emission energy. In order to enhance the aggregation properties we have focussed on amphiphilic complexes. We report the synthesis and photophysical characterisation of a blue-emitting bolaamphiphilic zwitterionic Ir(III) complex and an analogous cationic amphiphilic compound, used as a reference. The bolaamphiphile exhibited blue (λmax = 450 nm) emission in dilute, deaerated solution with a photoluminescence quantum yield (PLQY) of 22%, similar to the related cationic amphiphilic complex. The bolaamphiphile displayed significant emission enhancement in the solid state, with an emission quantum yield that reach 52%. Interestingly, the emission of the cationic analogue suffers from aggregation quenching in the solid state, (PLQY = 3%) as is common for these type of complexes. A correlation between the photophysical data and the arrangement in the solid state is discussed.
Noviyan Darmawan, L.S. (2019). Blue-emitting bolaamphiphilic zwitterionic iridium(III) complex. DALTON TRANSACTIONS, 48, 3664-3670 [10.1039/C8DT04833A].
Blue-emitting bolaamphiphilic zwitterionic iridium(III) complex
Letizia Sambri;
2019
Abstract
Aggregation induced emission is a very interesting phenomenon that recently has attracted a lot of interest. Most of the examples deal with organic molecules or flat metal complexes. Here we demonstrate that, by design, even iridium compounds can display this process without shifting the emission energy. In order to enhance the aggregation properties we have focussed on amphiphilic complexes. We report the synthesis and photophysical characterisation of a blue-emitting bolaamphiphilic zwitterionic Ir(III) complex and an analogous cationic amphiphilic compound, used as a reference. The bolaamphiphile exhibited blue (λmax = 450 nm) emission in dilute, deaerated solution with a photoluminescence quantum yield (PLQY) of 22%, similar to the related cationic amphiphilic complex. The bolaamphiphile displayed significant emission enhancement in the solid state, with an emission quantum yield that reach 52%. Interestingly, the emission of the cationic analogue suffers from aggregation quenching in the solid state, (PLQY = 3%) as is common for these type of complexes. A correlation between the photophysical data and the arrangement in the solid state is discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.