We utilize the deformation theory of algebraic singularities to study charged matter in compactifications of M-theory, F-theory, and type IIa string theory on elliptically fibered Calabi-Yau manifolds. In F-theory, this description is more physical than that of resolution. We describe how two-cycles can be identified and systematically studied after deformation. For ADE singularities, we realize non-trivial ADE representations as sublattices of ℤN, where N is the multiplicity of the codimension one singularity before deformation. We give a method for the determination of Picard-Lefschetz vanishing cycles in this context and utilize this method for one-parameter smooth deformations of ADE singularities. We give a general map from junctions to weights and demonstrate that Freudenthal's recursion formula applied to junctions correctly reproduces the structure of high-dimensional ADE representations, including the 126 of SO(10) and the 43,758 of E6. We identify the Weyl group action in some examples, and verify its order in others. We describe the codimension two localization of matter in F-theory in the case of heterotic duality or simple normal crossing and demonstrate the branching of adjoint representations. Finally, we demonstrate geometrically that deformations correctly reproduce the appearance of non-simply-laced algebras induced by monodromy around codimension two singularities, showing the reduction of D4to G2in an example. A companion mathematical paper will follow. © SISSA 2013.
Grassi, A., Halverson, J., Shaneson, J.L. (2013). Matter from geometry without resolution. JOURNAL OF HIGH ENERGY PHYSICS, 2013(10), 1-44 [10.1007/JHEP10(2013)205].
Matter from geometry without resolution
Grassi, Antonella;
2013
Abstract
We utilize the deformation theory of algebraic singularities to study charged matter in compactifications of M-theory, F-theory, and type IIa string theory on elliptically fibered Calabi-Yau manifolds. In F-theory, this description is more physical than that of resolution. We describe how two-cycles can be identified and systematically studied after deformation. For ADE singularities, we realize non-trivial ADE representations as sublattices of ℤN, where N is the multiplicity of the codimension one singularity before deformation. We give a method for the determination of Picard-Lefschetz vanishing cycles in this context and utilize this method for one-parameter smooth deformations of ADE singularities. We give a general map from junctions to weights and demonstrate that Freudenthal's recursion formula applied to junctions correctly reproduces the structure of high-dimensional ADE representations, including the 126 of SO(10) and the 43,758 of E6. We identify the Weyl group action in some examples, and verify its order in others. We describe the codimension two localization of matter in F-theory in the case of heterotic duality or simple normal crossing and demonstrate the branching of adjoint representations. Finally, we demonstrate geometrically that deformations correctly reproduce the appearance of non-simply-laced algebras induced by monodromy around codimension two singularities, showing the reduction of D4to G2in an example. A companion mathematical paper will follow. © SISSA 2013.File | Dimensione | Formato | |
---|---|---|---|
HalversonShanesonMatter.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
621.72 kB
Formato
Adobe PDF
|
621.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.