In an increasingly interconnected world, mobile and wearable devices, through short range communication interfaces and sensors, become needful tools for collecting and disseminating information in high population density environments. In this context Mobile Crowdsensing (MCS), leveraging people's roaming and their devices' resources, raised the citizen from mere walk-on parts to active participant in the knowledge building and data dissemination process. At the same time, Mobile Edge Computing (MEC) architecture has recently enhanced the two-layer cloud-device architectural model easing the exchange of information and shifting most computational cost from devices towards middle-layer proxies, namely, network edges. We introduce Human-driven Edge Computing, a new model which melts together the power of MEC platform and the large-scale sensing of MCS to realize a better data spreading and environmental coverage in smart cities. In addition, it will be briefly discussed the main sociological aspects related to human behavior and how they can influence the exchange of data in large-scale sensor networks.
Belli, D., Chessa, S., Foschini, L., Girolami, M. (2018). Enhancing Mobile Edge Computing Architecture with Human-Driven Edge Computing Model. Institute of Electrical and Electronics Engineers Inc. [10.1109/IE.2018.00023].
Enhancing Mobile Edge Computing Architecture with Human-Driven Edge Computing Model
Foschini, Luca;
2018
Abstract
In an increasingly interconnected world, mobile and wearable devices, through short range communication interfaces and sensors, become needful tools for collecting and disseminating information in high population density environments. In this context Mobile Crowdsensing (MCS), leveraging people's roaming and their devices' resources, raised the citizen from mere walk-on parts to active participant in the knowledge building and data dissemination process. At the same time, Mobile Edge Computing (MEC) architecture has recently enhanced the two-layer cloud-device architectural model easing the exchange of information and shifting most computational cost from devices towards middle-layer proxies, namely, network edges. We introduce Human-driven Edge Computing, a new model which melts together the power of MEC platform and the large-scale sensing of MCS to realize a better data spreading and environmental coverage in smart cities. In addition, it will be briefly discussed the main sociological aspects related to human behavior and how they can influence the exchange of data in large-scale sensor networks.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.