In this paper we prove that for noneffectively hyperbolic operators with smooth double characteristics exhibiting a Jordan block of size 4 on the double manifold the Cauchy problem is well posed in the Gevrey 5 class, beyond the generic Gevrey class 2 ( see e.g. cite{Bro}). Moreover we show that this value is optimal due to some geometric constraints on the Hamiltonian flow of the principal symbol. These results, together with results already proven, give a complete picture of the well posedness of the Cauchy problem around hyperbolic double characteristics.

On the Cauchy Problem for non-effectively hyperbolic operators, the Gevrey 5 well-posedness

BERNARDI, ENRICO;
2008

Abstract

In this paper we prove that for noneffectively hyperbolic operators with smooth double characteristics exhibiting a Jordan block of size 4 on the double manifold the Cauchy problem is well posed in the Gevrey 5 class, beyond the generic Gevrey class 2 ( see e.g. cite{Bro}). Moreover we show that this value is optimal due to some geometric constraints on the Hamiltonian flow of the principal symbol. These results, together with results already proven, give a complete picture of the well posedness of the Cauchy problem around hyperbolic double characteristics.
2008
E.Bernardi;T.Nishitani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/67900
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact