The selective conversion of variously substituted epoxides into the corresponding cyclic carbonates under mild reaction conditions was achieved with mononuclear Fe(III) complexes bearing bis-thioether-diphenolate [OSSO]-type ligands, in combination with tetrabutylammonium bromide (TBAB). For example, propylene carbonate was obtained in 1 h at 35 °C (turnover frequency, TOF = 290 h-1), from propylene oxide and 1 bar of CO2 pressure, using 0.1 mol % of the Fe(III) complex and 0.5 mol % of TBAB. Product divergence is observed only for cyclohexene oxide toward the exclusive formation of the aliphatic polycarbonate (TOF = 165 h-1 at 80 °C and 1 bar of CO2 pressure, using 0.1 mol % of the Fe(III) complex and 0.1 mol % of tetrabutylammonium chloride). Kinetic investigations indicated reaction orders of two and one, with respect to the Fe(III) complex, for the production of propylene carbonate and the poly(cyclohexene carbonate), respectively. The enthalpy and entropy of activation were determined using the Eyring equation [for propylene carbonate: δH‡ = 8.4 ± 0.7 kcal/mol and δS‡ = -33 ± 3 cal/(mol·K); for poly(cyclohexene carbonate): δH‡ = 11.9 ± 0.3 kal/mol and δS‡ = -36 ± 2.2 cal/(mol·K)]. Supported by density functional theory based investigations, we propose a mechanistic scenario in which the rate-limiting step is the bimetallic ring opening of the epoxide, in the case of propylene carbonate, and the monometallic insertion of the epoxide in the growing polymer chain, in the case of poly(cyclohexene carbonate).

Della Monica, F., Maity, B., Pehl, T., Buonerba, A., De Nisi, A., Monari, M., et al. (2018). -Type Iron(III) Complexes for the Low-Pressure Reaction of Carbon Dioxide with Epoxides: Catalytic Activity, Reaction Kinetics, and Computational Study. ACS CATALYSIS, 8(8), 6882-6893 [10.1021/acscatal.8b01695].

-Type Iron(III) Complexes for the Low-Pressure Reaction of Carbon Dioxide with Epoxides: Catalytic Activity, Reaction Kinetics, and Computational Study

Monari, Magda;
2018

Abstract

The selective conversion of variously substituted epoxides into the corresponding cyclic carbonates under mild reaction conditions was achieved with mononuclear Fe(III) complexes bearing bis-thioether-diphenolate [OSSO]-type ligands, in combination with tetrabutylammonium bromide (TBAB). For example, propylene carbonate was obtained in 1 h at 35 °C (turnover frequency, TOF = 290 h-1), from propylene oxide and 1 bar of CO2 pressure, using 0.1 mol % of the Fe(III) complex and 0.5 mol % of TBAB. Product divergence is observed only for cyclohexene oxide toward the exclusive formation of the aliphatic polycarbonate (TOF = 165 h-1 at 80 °C and 1 bar of CO2 pressure, using 0.1 mol % of the Fe(III) complex and 0.1 mol % of tetrabutylammonium chloride). Kinetic investigations indicated reaction orders of two and one, with respect to the Fe(III) complex, for the production of propylene carbonate and the poly(cyclohexene carbonate), respectively. The enthalpy and entropy of activation were determined using the Eyring equation [for propylene carbonate: δH‡ = 8.4 ± 0.7 kcal/mol and δS‡ = -33 ± 3 cal/(mol·K); for poly(cyclohexene carbonate): δH‡ = 11.9 ± 0.3 kal/mol and δS‡ = -36 ± 2.2 cal/(mol·K)]. Supported by density functional theory based investigations, we propose a mechanistic scenario in which the rate-limiting step is the bimetallic ring opening of the epoxide, in the case of propylene carbonate, and the monometallic insertion of the epoxide in the growing polymer chain, in the case of poly(cyclohexene carbonate).
2018
Della Monica, F., Maity, B., Pehl, T., Buonerba, A., De Nisi, A., Monari, M., et al. (2018). -Type Iron(III) Complexes for the Low-Pressure Reaction of Carbon Dioxide with Epoxides: Catalytic Activity, Reaction Kinetics, and Computational Study. ACS CATALYSIS, 8(8), 6882-6893 [10.1021/acscatal.8b01695].
Della Monica, Francesco; Maity, Bholanath; Pehl, Thomas; Buonerba, Antonio; De Nisi, Assunta; Monari, Magda; Grassi, Alfonso; Rieger, Bernhard*; Caval...espandi
File in questo prodotto:
File Dimensione Formato  
[OSSO]-Type Iron(III).pdf

Open Access dal 16/06/2019

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 3.58 MB
Formato Adobe PDF
3.58 MB Adobe PDF Visualizza/Apri
cs8b01695_si_001.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per accesso libero gratuito
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/678542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 103
social impact