LOFAR is a revolutionary instrument, operating at low frequencies (ν ≤ 240 MHz). It will drive major breakthroughs in the area of observational cosmology, but its use requires the development of challenging techniques and algorithms. Since its field of view and sensitivity are increased by orders of magnitude as compared to the older generation of instruments, new technical problems have to be addressed. The LOFAR survey team is in charge of commissioning the first LOFAR data produced in the imager mode as part of building the imaging pipeline. We are developing algorithms to tackle the problems associated with calibration (ionosphere, beam, etc.) and wide-field imaging for the achievement of the deep extragalactic surveys. New types of problems arise in that context, and notions such as algorithmic complexity and parallelism become fundamental. © 2011 Académie des sciences.
LOFAR calibration and wide-field imaging
Bonafede, Annalisa;Macario, Giulia;
2012
Abstract
LOFAR is a revolutionary instrument, operating at low frequencies (ν ≤ 240 MHz). It will drive major breakthroughs in the area of observational cosmology, but its use requires the development of challenging techniques and algorithms. Since its field of view and sensitivity are increased by orders of magnitude as compared to the older generation of instruments, new technical problems have to be addressed. The LOFAR survey team is in charge of commissioning the first LOFAR data produced in the imager mode as part of building the imaging pipeline. We are developing algorithms to tackle the problems associated with calibration (ionosphere, beam, etc.) and wide-field imaging for the achievement of the deep extragalactic surveys. New types of problems arise in that context, and notions such as algorithmic complexity and parallelism become fundamental. © 2011 Académie des sciences.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.