We introduce an arithmetic version of the multivariate Tutte polynomial and a quasi-polynomial that interpolates between the two. A generalized Fortuin-Kasteleyn representation with applications to arithmetic colorings and flows is obtained. We give a new and more general proof of the positivity of the coefficients of the arithmetic Tutte polynomial and (in the representable case) a geometrical interpretation of them.
Branden P, Moci L (2014). THE MULTIVARIATE ARITHMETIC TUTTE POLYNOMIAL. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 366(10), 5523-5540 [10.1090/S0002-9947-2014-06092-3].
THE MULTIVARIATE ARITHMETIC TUTTE POLYNOMIAL
Moci L
2014
Abstract
We introduce an arithmetic version of the multivariate Tutte polynomial and a quasi-polynomial that interpolates between the two. A generalized Fortuin-Kasteleyn representation with applications to arithmetic colorings and flows is obtained. We give a new and more general proof of the positivity of the coefficients of the arithmetic Tutte polynomial and (in the representable case) a geometrical interpretation of them.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
transactions366-10-2014.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
252.67 kB
Formato
Adobe PDF
|
252.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.