Given the toric (or toral) arrangement defined by a root system Φ, we describe the poset of its layers (connected components of intersections) and we count its elements. Indeed we show how to reduce to zero-dimensional layers, and in this case we provide an explicit formula involving the maximal subdiagrams of the affine Dynkin diagram of Φ. Then we compute the Euler characteristic and the Poincare' polynomial of the complement of the arrangement, which is the set of regular points of the torus.

Moci L (2008). Combinatorics and topology of toric arrangements defined by root systems. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 19(4), 293-308.

Combinatorics and topology of toric arrangements defined by root systems

Moci L
2008

Abstract

Given the toric (or toral) arrangement defined by a root system Φ, we describe the poset of its layers (connected components of intersections) and we count its elements. Indeed we show how to reduce to zero-dimensional layers, and in this case we provide an explicit formula involving the maximal subdiagrams of the affine Dynkin diagram of Φ. Then we compute the Euler characteristic and the Poincare' polynomial of the complement of the arrangement, which is the set of regular points of the torus.
2008
Moci L (2008). Combinatorics and topology of toric arrangements defined by root systems. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 19(4), 293-308.
Moci L
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/676738
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact