We present an approach to schedule Long Term Evolution (LTE) uplink (UL) Machine-to-Machine (M2M) traffic in a densely deployed heterogeneous network, over the street lights of a big boulevard for smart city applications. The small cells operate with frequency reuse 1, and inter-cell interference (ICI) is a critical issue to manage. We consider a 3rd Generation Partnership Project (3GPP) compliant scenario, where single-carrier frequency-division multiple access (SC-FDMA) is selected as the multiple access scheme, which requires that all resource blocks (RBs) allocated to a single user have to be contiguous in the frequency within each time slot. This adjacency constraint limits the flexibility of the frequency-domain packet scheduling (FDPS) and inter-cell interference coordination (ICIC), when trying to maximize the scheduling objectives, and this makes the problem NP-hard. We aim to solve a multi-objective optimization problem, to maximize the overall throughput, maximize the radio resource usage and minimize the ICI. This can be modelled through a mixed-integer linear programming (MILP) and solved through a heuristic implementable in the standards. We propose two models. The first one allocates resources based on the three optimization criteria, while the second model is more compact and is demonstrated through numerical evaluation in CPLEX, to be equivalent in the complexity, while it performs better and executes faster. We present simulation results in a 3GPP compliant network simulator, implementing the overall protocol stack, which support the effectiveness of our algorithm, for different M2M applications, with respect to the state-of-the-art approaches.
Abrignani, M.D., Giupponi, L., Lodi, A., Verdone, R. (2018). Scheduling M2M traffic over LTE uplink of a dense small cell network. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2018, 1-21 [10.1186/s13638-018-1206-2].
Scheduling M2M traffic over LTE uplink of a dense small cell network
Abrignani, Melchiorre Danilo;Lodi, Andrea;Verdone, Roberto
2018
Abstract
We present an approach to schedule Long Term Evolution (LTE) uplink (UL) Machine-to-Machine (M2M) traffic in a densely deployed heterogeneous network, over the street lights of a big boulevard for smart city applications. The small cells operate with frequency reuse 1, and inter-cell interference (ICI) is a critical issue to manage. We consider a 3rd Generation Partnership Project (3GPP) compliant scenario, where single-carrier frequency-division multiple access (SC-FDMA) is selected as the multiple access scheme, which requires that all resource blocks (RBs) allocated to a single user have to be contiguous in the frequency within each time slot. This adjacency constraint limits the flexibility of the frequency-domain packet scheduling (FDPS) and inter-cell interference coordination (ICIC), when trying to maximize the scheduling objectives, and this makes the problem NP-hard. We aim to solve a multi-objective optimization problem, to maximize the overall throughput, maximize the radio resource usage and minimize the ICI. This can be modelled through a mixed-integer linear programming (MILP) and solved through a heuristic implementable in the standards. We propose two models. The first one allocates resources based on the three optimization criteria, while the second model is more compact and is demonstrated through numerical evaluation in CPLEX, to be equivalent in the complexity, while it performs better and executes faster. We present simulation results in a 3GPP compliant network simulator, implementing the overall protocol stack, which support the effectiveness of our algorithm, for different M2M applications, with respect to the state-of-the-art approaches.File | Dimensione | Formato | |
---|---|---|---|
s13638-018-1206-2.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.