Liquid metals are promising fluids for engineering applications since they have interesting physical properties such as high thermal conductivity and low kinematic viscosity with respect to the values of common operating fluids, i.e. air and water. This implies low Prandtl number values and therefore the similarity assumption between velocity and temperature fields does not hold. In the present work we solve a four parameter turbulence model coupled with the Reynolds Averaged Navier Stokes system of equations to simulate a turbulent flow of liquid sodium over a vertical backward facing step. On the wall behind the step a uniform heat flux is applied in order to study both forced and mixed convection flow regimes. This model for turbulent heat transfer, taking into account different boundary conditions, is analyzed and compared with the Kays correlation and Direct Numerical Simulation data. Profiles of velocity, turbulent kinetic energy, turbulent heat flux, temperature and its squared fluctuations are provided for two simulated Richardson number values, namely 0 and 0.338. Obtained results show a reasonable agreement with reference Direct Numerical Simulation values.

Da Vià, R., Manservisi, S. (2019). Numerical simulation of forced and mixed convection turbulent liquid sodium flow over a vertical backward facing step with a four parameter turbulence model. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 135, 591-603 [10.1016/j.ijheatmasstransfer.2019.01.129].

Numerical simulation of forced and mixed convection turbulent liquid sodium flow over a vertical backward facing step with a four parameter turbulence model

Da Vià, R.;Manservisi, S.
2019

Abstract

Liquid metals are promising fluids for engineering applications since they have interesting physical properties such as high thermal conductivity and low kinematic viscosity with respect to the values of common operating fluids, i.e. air and water. This implies low Prandtl number values and therefore the similarity assumption between velocity and temperature fields does not hold. In the present work we solve a four parameter turbulence model coupled with the Reynolds Averaged Navier Stokes system of equations to simulate a turbulent flow of liquid sodium over a vertical backward facing step. On the wall behind the step a uniform heat flux is applied in order to study both forced and mixed convection flow regimes. This model for turbulent heat transfer, taking into account different boundary conditions, is analyzed and compared with the Kays correlation and Direct Numerical Simulation data. Profiles of velocity, turbulent kinetic energy, turbulent heat flux, temperature and its squared fluctuations are provided for two simulated Richardson number values, namely 0 and 0.338. Obtained results show a reasonable agreement with reference Direct Numerical Simulation values.
2019
Da Vià, R., Manservisi, S. (2019). Numerical simulation of forced and mixed convection turbulent liquid sodium flow over a vertical backward facing step with a four parameter turbulence model. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 135, 591-603 [10.1016/j.ijheatmasstransfer.2019.01.129].
Da Vià, R.*; Manservisi, S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/672690
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 14
social impact