This paper presents an off-board DC fast battery charger for electric vehicles (EVs) based on modular three-phase interleaved converters supplied by the low-voltage AC grid. The charger rectifies the grid voltage to a common DC-bus voltage having a slightly adjustable level by means of AC/DC interleaved three-phase active rectifier, composed of three standard commercial two-level three-phase converter modules. Three identical three-phase modules connected in parallel form a modular interleaved DC/DC converter to supply the battery. This structure offers a use of low-cost, unified and industry-recognized three-phase power modules for high- power fast EV charging stations that will reduce capital and maintenance costs of the charging facilities, enhancing further expansion of the eco-friendly transport. An original control strategy has been proposed to provide ripple-free output current in the typical EV batteries voltage range. The effect of coupling on the individual input/output inductors and total input/output current ripples has been investigated, considering both possible coupling implementations, i.e. inverse and direct coupling. Simulation results, carried out in MATLAB/Simulink environment, are reported in to confirm the feasibility and the effectiveness of the proposed EV fast charging configuration.

A Ripple-Free DC Output Current Fast Charger for Electric Vehicles Based on Grid-Tied Modular Three-Phase Interleaved Converters

Grandi, Gabriele;Hammami, Manel;Mandrioli, Riccardo;Viatkin, Aleksandr;Vujacic, Marija
2018

Abstract

This paper presents an off-board DC fast battery charger for electric vehicles (EVs) based on modular three-phase interleaved converters supplied by the low-voltage AC grid. The charger rectifies the grid voltage to a common DC-bus voltage having a slightly adjustable level by means of AC/DC interleaved three-phase active rectifier, composed of three standard commercial two-level three-phase converter modules. Three identical three-phase modules connected in parallel form a modular interleaved DC/DC converter to supply the battery. This structure offers a use of low-cost, unified and industry-recognized three-phase power modules for high- power fast EV charging stations that will reduce capital and maintenance costs of the charging facilities, enhancing further expansion of the eco-friendly transport. An original control strategy has been proposed to provide ripple-free output current in the typical EV batteries voltage range. The effect of coupling on the individual input/output inductors and total input/output current ripples has been investigated, considering both possible coupling implementations, i.e. inverse and direct coupling. Simulation results, carried out in MATLAB/Simulink environment, are reported in to confirm the feasibility and the effectiveness of the proposed EV fast charging configuration.
Proceedings of the IEEE 2018 International Symposium on Industrial Electronics - INDEL
1
7
Drobnic, Klemen; Grandi, Gabriele; Hammami, Manel; Mandrioli, Riccardo; Viatkin, Aleksandr; Vujacic, Marija
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/671689
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 4
social impact