OBJECTIVE: We examined whether additional helmet flow obtained by a single-circuit and a modified plateau valve applied at the helmet expiratory port (open-circuit ventilators) improves CO(2) wash-out by increasing helmet airflow. DESIGN AND SETTING: Randomized physiological study in a university research laboratory. PARTICIPANTS: Ten healthy volunteers. INTERVENTIONS: Helmet continuous positive airway pressure and pressure support ventilation delivered by an ICU ventilator (closed-circuit ventilator) and two open-circuit ventilators equipped with a plateau valve placed either at the inspiratory or at the helmet expiratory port. MEASUREMENTS AND RESULTS: We measured helmet air leaks, breathing pattern, helmet minute ventilation (Eh)), minute ventilation washing the helmet (Ewh)), CO(2) wash-out, and ventilator inspiratory assistance. Air leaks were small and similar in all conditions. Breathing pattern was similar among the different ventilators. Inspiratory and end-tidal CO(2) were lower, while (Eh) and (Ewh) were higher only using open-circuit ventilators with the plateau valve placed at the helmet expiratory port. This occurred notwithstanding these ventilators delivered a lower inspiratory assistance. CONCLUSIONS: Additional helmet flow provided by open-circuit ventilators can lower helmet CO(2) rebreathing. However, inspiratory pressure assistance significantly decreases using open-circuit ventilators, still casting doubts on the choice of the optimal helmet ventilation setup.
Racca F, Appendini L, Gregoretti C, Varese I, Berta G, Vittone F, et al. (2008). Helmet ventilation and carbon dioxide rebreathing: effects of adding a leak at the helmet ports. INTENSIVE CARE MEDICINE, Aug;34(8), 1461-1468.
Helmet ventilation and carbon dioxide rebreathing: effects of adding a leak at the helmet ports
Ranieri VM.
2008
Abstract
OBJECTIVE: We examined whether additional helmet flow obtained by a single-circuit and a modified plateau valve applied at the helmet expiratory port (open-circuit ventilators) improves CO(2) wash-out by increasing helmet airflow. DESIGN AND SETTING: Randomized physiological study in a university research laboratory. PARTICIPANTS: Ten healthy volunteers. INTERVENTIONS: Helmet continuous positive airway pressure and pressure support ventilation delivered by an ICU ventilator (closed-circuit ventilator) and two open-circuit ventilators equipped with a plateau valve placed either at the inspiratory or at the helmet expiratory port. MEASUREMENTS AND RESULTS: We measured helmet air leaks, breathing pattern, helmet minute ventilation (Eh)), minute ventilation washing the helmet (Ewh)), CO(2) wash-out, and ventilator inspiratory assistance. Air leaks were small and similar in all conditions. Breathing pattern was similar among the different ventilators. Inspiratory and end-tidal CO(2) were lower, while (Eh) and (Ewh) were higher only using open-circuit ventilators with the plateau valve placed at the helmet expiratory port. This occurred notwithstanding these ventilators delivered a lower inspiratory assistance. CONCLUSIONS: Additional helmet flow provided by open-circuit ventilators can lower helmet CO(2) rebreathing. However, inspiratory pressure assistance significantly decreases using open-circuit ventilators, still casting doubts on the choice of the optimal helmet ventilation setup.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


