Smartphone applications are considered as the prime candidate for the purposes of large-scale, low-cost and long-term sleep monitoring. How reliable and scientifically grounded is smartphone-based assessment of healthy and disturbed sleep remains a key issue in this direction. Here we offer a review of validation studies of sleep applications to the aim of providing some guidance in terms of their reliability to assess sleep in healthy and clinical populations, and stimulating further examination of their potential for clinical use and improved sleep hygiene. Electronic literature review was conducted on Pubmed. Eleven validation studies published since 2012 were identified, evaluating smartphone applications' performance compared to standard methods of sleep assessment in healthy and clinical samples. Studies with healthy populations show that most sleep applications meet or exceed accuracy levels of wrist-based actigraphy in sleep-wake cycle discrimination, whereas performance levels drop in individuals with low sleep efficiency (SE) and in clinical populations, mirroring actigraphy results. Poor correlation with polysomnography (PSG) sleep sub-stages is reported by most accelerometer-based apps. However, multiple parameter-based applications (i.e., EarlySense, SleepAp) showed good capability in detection of sleep-wake stages and sleep-related breathing disorders (SRBD) like obstructive sleep apnea (OSA) respectively with values similar to PSG. While the reviewed evidence suggests a potential role of smartphone sleep applications in pre-screening of SRBD, more experimental studies are warranted to assess their reliability in sleep-wake detection particularly. Apps' utility in post treatment follow-up at home or as an adjunct to the sleep diary in clinical setting is also stressed.
Edita Fino, Michela Mazzetti (2019). Monitoring healthy and disturbed sleep through smartphone applications: a review of experimental evidence. SLEEP & BREATHING, 23(1), 13-24 [10.1007/s11325-018-1661-3].
Monitoring healthy and disturbed sleep through smartphone applications: a review of experimental evidence.
Edita Fino
;Michela Mazzetti
2019
Abstract
Smartphone applications are considered as the prime candidate for the purposes of large-scale, low-cost and long-term sleep monitoring. How reliable and scientifically grounded is smartphone-based assessment of healthy and disturbed sleep remains a key issue in this direction. Here we offer a review of validation studies of sleep applications to the aim of providing some guidance in terms of their reliability to assess sleep in healthy and clinical populations, and stimulating further examination of their potential for clinical use and improved sleep hygiene. Electronic literature review was conducted on Pubmed. Eleven validation studies published since 2012 were identified, evaluating smartphone applications' performance compared to standard methods of sleep assessment in healthy and clinical samples. Studies with healthy populations show that most sleep applications meet or exceed accuracy levels of wrist-based actigraphy in sleep-wake cycle discrimination, whereas performance levels drop in individuals with low sleep efficiency (SE) and in clinical populations, mirroring actigraphy results. Poor correlation with polysomnography (PSG) sleep sub-stages is reported by most accelerometer-based apps. However, multiple parameter-based applications (i.e., EarlySense, SleepAp) showed good capability in detection of sleep-wake stages and sleep-related breathing disorders (SRBD) like obstructive sleep apnea (OSA) respectively with values similar to PSG. While the reviewed evidence suggests a potential role of smartphone sleep applications in pre-screening of SRBD, more experimental studies are warranted to assess their reliability in sleep-wake detection particularly. Apps' utility in post treatment follow-up at home or as an adjunct to the sleep diary in clinical setting is also stressed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.