This is a preliminary case-control study on osteopenic/osteoporotic elderly women, testing the association of proximal femur fracture with minimum femoral strength, as derived from finite element (FE) analysis in multiple loading conditions. Fracture cases (n=22) in acute conditions were enrolled among low-trauma fractures admitted in various hospitals in the Emilia Romagna Region, Italy. Women with no history of low-trauma fractures were enrolled as controls (n=33). Patients were imaged with DXA to obtain aBMD, and with a bilateral full femur CT scan. FE-strength was derived in stance and fall configurations: (i) as the minimum strength among those obtained for multiple loading conditions spanning a domain of plausible force directions, and (ii) as the strength associated to the most commonly used single loading conditions. The association of FE-strength and aBMD with fractures was tested with logistic regression models, deriving odds ratios (ORs) and area under the receiver operating characteristic curve (AUC). FE-strength from multiple loading conditions better classified fracture cases from controls (OR per SD change=9.6, 95% CI=3.0-31.3, AUC=0.87 in stance; OR=9.5, 95% CI=2.9-31.2, AUC=0.88 in fall) compared to aBMD (OR=3.6, 95% CI=1.6-8.2, AUC=0.79 for total femur aBMD), while FE-strength results from the most commonly used single loading conditions were similar to aBMD. Only FE-strength from multiple loading conditions remained significant in age- and aBMD-adjusted models (OR=10.5, 95% CI=1.8-61.3, AUC=0.95). In summary, we highlighted the importance of considering different loading conditions to identify bone weakness, and confirmed that femoral FE-strength estimates may add value to aBMD predictions in elderly osteopenic/osteoporotic women.

Falcinelli, C., Schileo, E., Balistreri, L., Baruffaldi, F., Bordini, B., Viceconti, M., et al. (2014). Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: A preliminary study in elderly women. BONE, Oct(67), 71-80 [10.1016/j.bone.2014.06.038].

Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: A preliminary study in elderly women

Viceconti, M.;MILANDRI, LIBERO;
2014

Abstract

This is a preliminary case-control study on osteopenic/osteoporotic elderly women, testing the association of proximal femur fracture with minimum femoral strength, as derived from finite element (FE) analysis in multiple loading conditions. Fracture cases (n=22) in acute conditions were enrolled among low-trauma fractures admitted in various hospitals in the Emilia Romagna Region, Italy. Women with no history of low-trauma fractures were enrolled as controls (n=33). Patients were imaged with DXA to obtain aBMD, and with a bilateral full femur CT scan. FE-strength was derived in stance and fall configurations: (i) as the minimum strength among those obtained for multiple loading conditions spanning a domain of plausible force directions, and (ii) as the strength associated to the most commonly used single loading conditions. The association of FE-strength and aBMD with fractures was tested with logistic regression models, deriving odds ratios (ORs) and area under the receiver operating characteristic curve (AUC). FE-strength from multiple loading conditions better classified fracture cases from controls (OR per SD change=9.6, 95% CI=3.0-31.3, AUC=0.87 in stance; OR=9.5, 95% CI=2.9-31.2, AUC=0.88 in fall) compared to aBMD (OR=3.6, 95% CI=1.6-8.2, AUC=0.79 for total femur aBMD), while FE-strength results from the most commonly used single loading conditions were similar to aBMD. Only FE-strength from multiple loading conditions remained significant in age- and aBMD-adjusted models (OR=10.5, 95% CI=1.8-61.3, AUC=0.95). In summary, we highlighted the importance of considering different loading conditions to identify bone weakness, and confirmed that femoral FE-strength estimates may add value to aBMD predictions in elderly osteopenic/osteoporotic women.
2014
Falcinelli, C., Schileo, E., Balistreri, L., Baruffaldi, F., Bordini, B., Viceconti, M., et al. (2014). Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: A preliminary study in elderly women. BONE, Oct(67), 71-80 [10.1016/j.bone.2014.06.038].
Falcinelli, C.; Schileo, E.; Balistreri, L.; Baruffaldi, F.; Bordini, B.; Viceconti, M.; Albisinni, U.; Ceccarelli, F.; Milandri, L.; Toni, A.; Taddei...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/670592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 76
social impact