Innovations in information and communication technology infuse all branches of science, including life sciences. Nevertheless, healthcare is historically slow in adopting technological innovation, compared with other industrial sectors. In recent years, new approaches in modelling and simulation have started to provide important insights in biomedicine, opening the way for their potential use in the reduction, refinement and partial substitution of both animal and human experimentation. In light of this evidence, the European Parliament and the United States Congress made similar recommendations to their respective regulators to allow wider use of modelling and simulation within the regulatory process. In the context of in silico medicine, the term 'in silico clinical trials' refers to the development of patient-specific models to form virtual cohorts for testing the safety and/or efficacy of new drugs and of new medical devices. Moreover, it could be envisaged that a virtual set of patients could complement a clinical trial (reducing the number of enrolled patients and improving statistical significance), and/or advise clinical decisions. This article will review the current state of in silico clinical trials and outline directions for a full-scale adoption of patient-specific modelling and simulation in the regulatory evaluation of biomedical products. In particular, we will focus on the development of vaccine therapies, which represents, in our opinion, an ideal target for this innovative approach.

Pappalardo, F., Russo, G., Tshinanu, F.M., Viceconti, M. (2019). In silico clinical trials: concepts and early adoptions. BRIEFINGS IN BIOINFORMATICS, 20(5), 1699-1708 [10.1093/bib/bby043].

In silico clinical trials: concepts and early adoptions

Viceconti, M.
Writing – Original Draft Preparation
2019

Abstract

Innovations in information and communication technology infuse all branches of science, including life sciences. Nevertheless, healthcare is historically slow in adopting technological innovation, compared with other industrial sectors. In recent years, new approaches in modelling and simulation have started to provide important insights in biomedicine, opening the way for their potential use in the reduction, refinement and partial substitution of both animal and human experimentation. In light of this evidence, the European Parliament and the United States Congress made similar recommendations to their respective regulators to allow wider use of modelling and simulation within the regulatory process. In the context of in silico medicine, the term 'in silico clinical trials' refers to the development of patient-specific models to form virtual cohorts for testing the safety and/or efficacy of new drugs and of new medical devices. Moreover, it could be envisaged that a virtual set of patients could complement a clinical trial (reducing the number of enrolled patients and improving statistical significance), and/or advise clinical decisions. This article will review the current state of in silico clinical trials and outline directions for a full-scale adoption of patient-specific modelling and simulation in the regulatory evaluation of biomedical products. In particular, we will focus on the development of vaccine therapies, which represents, in our opinion, an ideal target for this innovative approach.
2019
Pappalardo, F., Russo, G., Tshinanu, F.M., Viceconti, M. (2019). In silico clinical trials: concepts and early adoptions. BRIEFINGS IN BIOINFORMATICS, 20(5), 1699-1708 [10.1093/bib/bby043].
Pappalardo, F.; Russo, G.; Tshinanu, F. M.; Viceconti, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/670572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 127
social impact