We review the normal-based interpolating subdivision scheme proposed in [1]. We show that it allows the user to exactly represent circles/spheres whenever suitable initial data are provided, and we also prove that it enjoys the property of similarity invariance. In summary, we show that it satisfies all the requirements for the construction of a deformable model to be used in the delineation of biomedical images. We then also present experimental examples dealing with the delineation of 2D and 3D biological structures.

Romani Lucia, Anaïs Badoual, Michael Unser (2019). Normal-Based Interpolating Subdivision for the Geometric Representation of Deformable Models. IEEE [10.1109/ISBI.2019.8759305].

Normal-Based Interpolating Subdivision for the Geometric Representation of Deformable Models

Romani Lucia
;
2019

Abstract

We review the normal-based interpolating subdivision scheme proposed in [1]. We show that it allows the user to exactly represent circles/spheres whenever suitable initial data are provided, and we also prove that it enjoys the property of similarity invariance. In summary, we show that it satisfies all the requirements for the construction of a deformable model to be used in the delineation of biomedical images. We then also present experimental examples dealing with the delineation of 2D and 3D biological structures.
2019
2019 IEEE 16th International Symposium on Biomedical Imaging
1839
1843
Romani Lucia, Anaïs Badoual, Michael Unser (2019). Normal-Based Interpolating Subdivision for the Geometric Representation of Deformable Models. IEEE [10.1109/ISBI.2019.8759305].
Romani Lucia; Anaïs Badoual; Michael Unser
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/669078
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact