There is a rapid market growth for supercapacitors and batteries based on new materials and production strategies that minimize their cost, end-of-life environmental impact, and waste management. Herein, mixed-valence iron oxide (FeOx) and manganese oxide (Mn3O4) and FeOx-carbon black (FeOx-CB) electrodes with excellent pseudocapacitive behavior in 1M Na2SO4 are produced by a one-step thermal annealing. Due to the in situ grafted carbon black, the FeOx-CB shows a high pseudocapacitance of 408mF cm−2 (or 128 F g−1), and Mn3O4 after activation shows high pseudocapacitance of 480 mF cm−2 (192 F g−1). The asymmetric supercapacitor based on FeOx-CB and activated-Mn3O4 shows a capacitance of 260 mF cm−2 at 100 mHz and a cycling stability of 97.4% over 800 cycles. Furthermore, due to its facile redox reactions, the supercapacitor can be voltammetrically cycled up to a high rate of 2,000mV s−1 without a significant distortion of the voltammograms. Overall, our data indicate the feasibility of developing high-performance supercapacitors based on mixed-valence iron and manganese oxide electrodes in a single step.

Toward Low-Cost and Sustainable Supercapacitor Electrode Processing: Simultaneous Carbon Grafting and Coating of Mixed-Valence Metal Oxides by Fast Annealing / Malaie, Keyvan; Ganjali, Mohammad Reza; Soavi, Francesca. - In: FRONTIERS IN CHEMISTRY. - ISSN 2296-2646. - STAMPA. - 7:(2019), pp. 1-11. [10.3389/fchem.2019.00025]

Toward Low-Cost and Sustainable Supercapacitor Electrode Processing: Simultaneous Carbon Grafting and Coating of Mixed-Valence Metal Oxides by Fast Annealing

Soavi, Francesca
2019

Abstract

There is a rapid market growth for supercapacitors and batteries based on new materials and production strategies that minimize their cost, end-of-life environmental impact, and waste management. Herein, mixed-valence iron oxide (FeOx) and manganese oxide (Mn3O4) and FeOx-carbon black (FeOx-CB) electrodes with excellent pseudocapacitive behavior in 1M Na2SO4 are produced by a one-step thermal annealing. Due to the in situ grafted carbon black, the FeOx-CB shows a high pseudocapacitance of 408mF cm−2 (or 128 F g−1), and Mn3O4 after activation shows high pseudocapacitance of 480 mF cm−2 (192 F g−1). The asymmetric supercapacitor based on FeOx-CB and activated-Mn3O4 shows a capacitance of 260 mF cm−2 at 100 mHz and a cycling stability of 97.4% over 800 cycles. Furthermore, due to its facile redox reactions, the supercapacitor can be voltammetrically cycled up to a high rate of 2,000mV s−1 without a significant distortion of the voltammograms. Overall, our data indicate the feasibility of developing high-performance supercapacitors based on mixed-valence iron and manganese oxide electrodes in a single step.
2019
Toward Low-Cost and Sustainable Supercapacitor Electrode Processing: Simultaneous Carbon Grafting and Coating of Mixed-Valence Metal Oxides by Fast Annealing / Malaie, Keyvan; Ganjali, Mohammad Reza; Soavi, Francesca. - In: FRONTIERS IN CHEMISTRY. - ISSN 2296-2646. - STAMPA. - 7:(2019), pp. 1-11. [10.3389/fchem.2019.00025]
Malaie, Keyvan; Ganjali, Mohammad Reza; Soavi, Francesca
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/668851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact