Herein, we reported the utilization of pre-formed Au–Pt nanoparticles deposited on phosphorus functionalized carbons as effective catalysts for the oxidation of 5-hydroxymethylfurfural (HMF) to furandicarboxylic acid (FDCA). Au–Pt nanoparticles have been prepared by a two-step methodology using polyvinyl alcohol (PVA) as protective agent and a combination of NaBH4 and H2 as reducing agents. Three carbon nanofibers (CNFs) with different graphitization degrees have been functionalized through treatment with an H3PO4–HNO3 mixture at 150 C, in order to incorporate P groups on carbon surface. Surface and structural properties of the synthesized functionalized materials have been investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The structural and surface properties of carbon nanofibers determine the amount of P-functionalities, which is a key parameter affecting the catalytic performances of Au–Pt. Indeed, the highest activity and stability has been achieved for Au–Pt deposited on the sample, which showed the largest amount of P-groups on the surface.

Campisi, S., Capelli, S., Motta, D., Trujillo, F., Davies, T., Prati, L., et al. (2018). Catalytic Performances of Au–Pt Nanoparticles on Phosphorous Functionalized Carbon Nanofibers towards HMF Oxidation. C, 4(3), 48-64 [10.3390/c4030048].

Catalytic Performances of Au–Pt Nanoparticles on Phosphorous Functionalized Carbon Nanofibers towards HMF Oxidation

Dimitratos, Nikolaos;
2018

Abstract

Herein, we reported the utilization of pre-formed Au–Pt nanoparticles deposited on phosphorus functionalized carbons as effective catalysts for the oxidation of 5-hydroxymethylfurfural (HMF) to furandicarboxylic acid (FDCA). Au–Pt nanoparticles have been prepared by a two-step methodology using polyvinyl alcohol (PVA) as protective agent and a combination of NaBH4 and H2 as reducing agents. Three carbon nanofibers (CNFs) with different graphitization degrees have been functionalized through treatment with an H3PO4–HNO3 mixture at 150 C, in order to incorporate P groups on carbon surface. Surface and structural properties of the synthesized functionalized materials have been investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The structural and surface properties of carbon nanofibers determine the amount of P-functionalities, which is a key parameter affecting the catalytic performances of Au–Pt. Indeed, the highest activity and stability has been achieved for Au–Pt deposited on the sample, which showed the largest amount of P-groups on the surface.
2018
C
Campisi, S., Capelli, S., Motta, D., Trujillo, F., Davies, T., Prati, L., et al. (2018). Catalytic Performances of Au–Pt Nanoparticles on Phosphorous Functionalized Carbon Nanofibers towards HMF Oxidation. C, 4(3), 48-64 [10.3390/c4030048].
Campisi, Sebastiano; Capelli, Sofia; Motta, Davide; Trujillo, Felipe; Davies, Thomas; Prati, Laura; Dimitratos, Nikolaos; Villa, Alberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/666924
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact