In the framework of 2D elasticity problems, a family of Virtual Element schemes based on the Hellinger–Reissner variational principle is presented. A convergence and stability analysis is rigorously developed. Numerical tests confirming the theoretical predictions are performed.

Artioli, E., de Miranda, S., Lovadina, C., Patruno, L. (2018). A family of virtual element methods for plane elasticity problems based on the Hellinger–Reissner principle. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 340, 978-999 [10.1016/j.cma.2018.06.020].

A family of virtual element methods for plane elasticity problems based on the Hellinger–Reissner principle

Artioli, E.
;
de Miranda, S.;LOVADINA, CARLO;Patruno, L.
2018

Abstract

In the framework of 2D elasticity problems, a family of Virtual Element schemes based on the Hellinger–Reissner variational principle is presented. A convergence and stability analysis is rigorously developed. Numerical tests confirming the theoretical predictions are performed.
2018
Artioli, E., de Miranda, S., Lovadina, C., Patruno, L. (2018). A family of virtual element methods for plane elasticity problems based on the Hellinger–Reissner principle. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 340, 978-999 [10.1016/j.cma.2018.06.020].
Artioli, E.; de Miranda, S.; Lovadina, C.; Patruno, L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/665663
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
social impact