Since teeth are resistant to decomposition processes, they provide important and at times unique sources of information about fossil humans. Fortunately, dental remains reflect significant evolutionary changes. These changes make a very important and often exclusive contribution to the definition of new taxa or the attribution of fossil specimens to existing taxa. The traditional approach to dental morphometric analyses usually focuses on the recording of several measures of the tooth with calipers, especially the two basic crown diameters (buccolingual and mesiodistal). However, since these measures do not adequately represent the complex morphology of the tooth, 2D images and 3D digital models of dental morphology have been used. For both types of analysis, the possibility of correctly comparing homologous teeth depends on the adoption of a common orientation system. The lack of such a system makes it difficult to compare the results of different studies. Here we describe a new method for orienting teeth specifically devised for the upper and lower first molar (M1). Samples of unworn maxillary (n = 15) and mandibular (n = 15) first molars of modern humans were scanned with a Roland Picza 3D digitizer. The 3D virtual models were used to compare our new orientation method with those proposed in the literature. The new orientation system, which meets a geometric criterion, is based on three points identified on the cervical line and ensures acceptable repeatability of the spatial positioning and orientation independent of the shape and wear of the first molar under investigation. This orientation system is a first step toward the creation of a virtual set of hominid and fossil human first molars, which will allow us to make comparisons via a sophisticated and noninvasive approach. This pilot study also provides guidelines to extend the new methodology to the other types of teeth.

Improving the spacial orientation of human teeth using a virtual 3D approach

BENAZZI, STEFANO;FANTINI, MASSIMILIANO;DE CRESCENZIO, FRANCESCA;PERSIANI, FRANCO;GRUPPIONI, GIORGIO
2009

Abstract

Since teeth are resistant to decomposition processes, they provide important and at times unique sources of information about fossil humans. Fortunately, dental remains reflect significant evolutionary changes. These changes make a very important and often exclusive contribution to the definition of new taxa or the attribution of fossil specimens to existing taxa. The traditional approach to dental morphometric analyses usually focuses on the recording of several measures of the tooth with calipers, especially the two basic crown diameters (buccolingual and mesiodistal). However, since these measures do not adequately represent the complex morphology of the tooth, 2D images and 3D digital models of dental morphology have been used. For both types of analysis, the possibility of correctly comparing homologous teeth depends on the adoption of a common orientation system. The lack of such a system makes it difficult to compare the results of different studies. Here we describe a new method for orienting teeth specifically devised for the upper and lower first molar (M1). Samples of unworn maxillary (n = 15) and mandibular (n = 15) first molars of modern humans were scanned with a Roland Picza 3D digitizer. The 3D virtual models were used to compare our new orientation method with those proposed in the literature. The new orientation system, which meets a geometric criterion, is based on three points identified on the cervical line and ensures acceptable repeatability of the spatial positioning and orientation independent of the shape and wear of the first molar under investigation. This orientation system is a first step toward the creation of a virtual set of hominid and fossil human first molars, which will allow us to make comparisons via a sophisticated and noninvasive approach. This pilot study also provides guidelines to extend the new methodology to the other types of teeth.
2009
Stefano, Benazzi; Massimiliano, Fantini; Francesca, De Crescenzio; Franco, Persiani; Giorgio, Gruppioni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/66564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact