We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed result has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity.

Avanzini, M., Dal Lago, U. (2018). On sharing, memoization, and polynomial time. INFORMATION AND COMPUTATION, 261, 3-22 [10.1016/j.ic.2018.05.003].

On sharing, memoization, and polynomial time

Dal Lago, Ugo
2018

Abstract

We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed result has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity.
2018
Avanzini, M., Dal Lago, U. (2018). On sharing, memoization, and polynomial time. INFORMATION AND COMPUTATION, 261, 3-22 [10.1016/j.ic.2018.05.003].
Avanzini, Martin; Dal Lago, Ugo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/664479
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact