The galaxy Malin 1 contains the largest stellar disc known but the formation mechanism of this structure has been elusive. In this paper, we report a Malin 1 analogue in the 100 Mpc IllustrisTNG simulation and describe its formation history. At redshift zero, this massive galaxy, having a maximum circular velocity Vmax of 430 km s-1, contains a 100 kpc gas/stellar disc with morphology similar toMalin 1. The simulated galaxy reproduces well many observed features of Malin 1's vast disc, including its stellar ages, metallicities, and gas rotation curve. We trace the extended disc back in time and find that a large fraction of the cold gas at redshift zero originated from the cooling of hot halo gas, triggered by the merger of a pair of intruding galaxies. Our finding provides a novel way to form large galaxy discs as extreme as Malin 1 within the current galaxy formation framework.

Zhu, Q., Xu, D., Gaspari, M., Rodriguez-Gomez, V., Nelson, D., Vogelsberger, M., et al. (2018). Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. LETTERS, 480(1), L18-L22 [10.1093/mnrasl/sly111].

Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion

Marinacci, Federico;
2018

Abstract

The galaxy Malin 1 contains the largest stellar disc known but the formation mechanism of this structure has been elusive. In this paper, we report a Malin 1 analogue in the 100 Mpc IllustrisTNG simulation and describe its formation history. At redshift zero, this massive galaxy, having a maximum circular velocity Vmax of 430 km s-1, contains a 100 kpc gas/stellar disc with morphology similar toMalin 1. The simulated galaxy reproduces well many observed features of Malin 1's vast disc, including its stellar ages, metallicities, and gas rotation curve. We trace the extended disc back in time and find that a large fraction of the cold gas at redshift zero originated from the cooling of hot halo gas, triggered by the merger of a pair of intruding galaxies. Our finding provides a novel way to form large galaxy discs as extreme as Malin 1 within the current galaxy formation framework.
2018
Zhu, Q., Xu, D., Gaspari, M., Rodriguez-Gomez, V., Nelson, D., Vogelsberger, M., et al. (2018). Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. LETTERS, 480(1), L18-L22 [10.1093/mnrasl/sly111].
Zhu, Qirong; Xu, Dandan; Gaspari, Massimo; Rodriguez-Gomez, Vicente; Nelson, Dylan; Vogelsberger, Mark; Torrey, Paul; Pillepich, Annalisa; Zjupa, Jola...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/664282
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact