Terms of service of on-line platforms too often contain clauses that are potentially unfair to the consumer. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike.

Marco Lippi, Przemyslaw Palka, Giuseppe Contissa, Francesca Lagioia, Hans-Wolfgang Micklitz, Giovanni Sartor, et al. (2018). CLAUDETTE: an Automated Detector of Potentially Unfair Clauses in Online Terms of Service.

CLAUDETTE: an Automated Detector of Potentially Unfair Clauses in Online Terms of Service

Giuseppe Contissa;Francesca Lagioia;Giovanni Sartor;Paolo Torroni
2018

Abstract

Terms of service of on-line platforms too often contain clauses that are potentially unfair to the consumer. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike.
2018
Marco Lippi, Przemyslaw Palka, Giuseppe Contissa, Francesca Lagioia, Hans-Wolfgang Micklitz, Giovanni Sartor, et al. (2018). CLAUDETTE: an Automated Detector of Potentially Unfair Clauses in Online Terms of Service.
Marco Lippi; Przemyslaw Palka; Giuseppe Contissa; Francesca Lagioia; Hans-Wolfgang Micklitz; Giovanni Sartor; Paolo Torroni
File in questo prodotto:
File Dimensione Formato  
1805.01217.pdf

accesso aperto

Tipo: Preprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 502.2 kB
Formato Adobe PDF
502.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/663874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 111
  • ???jsp.display-item.citation.isi??? 67
social impact