Over the past years, the increasingly stringent emission regulations for Internal Combustion Engines (ICE) spawned a great amount of research in the field of combustion control optimization. Nowadays, optimal combustion control has become crucial, especially to properly manage innovative Low Temperature Combustion (LTC) strategies, usually characterized by high instability, cycle-to-cycle variability and sensitivity to slight variations of injection parameters and thermal conditions. Many works demonstrate that stability and maximum efficiency of LTC strategies can be guaranteed using closed-loop control strategies that vary the standard injection parameters (mapped during the base calibration activity) to keep engine torque and center of combustion (CA50) approximately equal to their target values. However, the combination of standard base calibration and closed-loop control is usually not sufficient to accurately control Low Temperature Combustions in transient conditions. As a matter of fact, to properly manage LTC strategies in transient conditions it is usually necessary to investigate the combustion methodology of interest and implement specific functions that provide an accurate feed-forward contribution to the closed-loop controller. This work presents the experimental analysis performed running a light-duty compression ignited engine in dual-fuel RCCI mode, the goal being to highlight the way injection parameters and charge temperature affect combustion stability and ignition delay. Finally, the paper describes how the obtained results can be used to define the optimal injections strategy in the analyzed operating points, i.e. the combination of injection parameters to be used as a feed-forward for a closed-loop combustion control strategy.

Ravaglioli, V., Ponti, F., Carra, F., De Cesare, M. (2018). Heat release experimental analysis for RCCI combustion optimization. American Society of Mechanical Engineers [10.1115/ICEF2018-9714].

Heat release experimental analysis for RCCI combustion optimization

Ravaglioli, V.;Ponti, F.;Carra, F.;De Cesare, M.
2018

Abstract

Over the past years, the increasingly stringent emission regulations for Internal Combustion Engines (ICE) spawned a great amount of research in the field of combustion control optimization. Nowadays, optimal combustion control has become crucial, especially to properly manage innovative Low Temperature Combustion (LTC) strategies, usually characterized by high instability, cycle-to-cycle variability and sensitivity to slight variations of injection parameters and thermal conditions. Many works demonstrate that stability and maximum efficiency of LTC strategies can be guaranteed using closed-loop control strategies that vary the standard injection parameters (mapped during the base calibration activity) to keep engine torque and center of combustion (CA50) approximately equal to their target values. However, the combination of standard base calibration and closed-loop control is usually not sufficient to accurately control Low Temperature Combustions in transient conditions. As a matter of fact, to properly manage LTC strategies in transient conditions it is usually necessary to investigate the combustion methodology of interest and implement specific functions that provide an accurate feed-forward contribution to the closed-loop controller. This work presents the experimental analysis performed running a light-duty compression ignited engine in dual-fuel RCCI mode, the goal being to highlight the way injection parameters and charge temperature affect combustion stability and ignition delay. Finally, the paper describes how the obtained results can be used to define the optimal injections strategy in the analyzed operating points, i.e. the combination of injection parameters to be used as a feed-forward for a closed-loop combustion control strategy.
2018
ASME 2018 Internal Combustion Engine Division Fall Technical Conference, ICEF 2018
1
11
Ravaglioli, V., Ponti, F., Carra, F., De Cesare, M. (2018). Heat release experimental analysis for RCCI combustion optimization. American Society of Mechanical Engineers [10.1115/ICEF2018-9714].
Ravaglioli, V.; Ponti, F.; Carra, F.; De Cesare, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/663348
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact