An important connection between the finite dimensional Gaussian Wick products and Lebesgue convolution products will be proven first. Then this connection will be used to prove an important H¨older inequality for the norms of Gaussian Wick products, reprove Nelson hypercontractivity inequality, and prove a more general inequality whose marginal cases are the H¨older and Nelson inequalities mentioned before. We will show that there is a deep connection between the Gaussian H¨older inequality and classic Ho¨lder inequality, between the Nelson hypercontractivity and classic Young inequality with the sharp constant, and between the third more general inequality and an extension by Lieb of the Young inequality with the best constant. Since the Gaussian probability measure exists even in the infinite dimensional case, the above three inequalities can be extended, via a classic Fatou’s lemma argument, to the infinite dimensional framework.

Da Pelo P., Lanconelli A., Stan Aurel I. (2011). Holder-Young-Lieb inequalities for norms of Gaussian Wick products. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 14(3), 375-407 [10.1142/S0219025711004456].

Holder-Young-Lieb inequalities for norms of Gaussian Wick products

Lanconelli A.
Investigation
;
2011

Abstract

An important connection between the finite dimensional Gaussian Wick products and Lebesgue convolution products will be proven first. Then this connection will be used to prove an important H¨older inequality for the norms of Gaussian Wick products, reprove Nelson hypercontractivity inequality, and prove a more general inequality whose marginal cases are the H¨older and Nelson inequalities mentioned before. We will show that there is a deep connection between the Gaussian H¨older inequality and classic Ho¨lder inequality, between the Nelson hypercontractivity and classic Young inequality with the sharp constant, and between the third more general inequality and an extension by Lieb of the Young inequality with the best constant. Since the Gaussian probability measure exists even in the infinite dimensional case, the above three inequalities can be extended, via a classic Fatou’s lemma argument, to the infinite dimensional framework.
2011
Da Pelo P., Lanconelli A., Stan Aurel I. (2011). Holder-Young-Lieb inequalities for norms of Gaussian Wick products. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 14(3), 375-407 [10.1142/S0219025711004456].
Da Pelo P.; Lanconelli A.; Stan Aurel I.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/662442
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact