In this paper we propose a Group-Sparse Representation based method with applications to Face Recognition (GSR-FR). The novel sparse representation variational model includes a non-convex sparsity-inducing penalty and a robust non-convex loss function. The penalty encourages group sparsity by using approximation of the ℓ0-quasinorm, and the loss function is chosen to make the algorithm robust to noise, occlusions and disguises. The solution of the non-trivial non-convex optimization problem is efficiently obtained by a majorization-minimization strategy combined with forward-backward splitting, which in particular reduces the solution to a sequence of easier convex optimization sub-problems. Extensive experiments on widely used face databases show the potentiality of the proposed model and demonstrate that the GSR-FR algorithm is competitive with state-of-the-art methods based on sparse representation, especially for very low dimensional feature spaces.
Fritz Keinert, Damiana Lazzaro, Serena Morigi (2019). A Robust Group-Sparse Representation Variational Method with applications to Face Recognition. IEEE TRANSACTIONS ON IMAGE PROCESSING, 28(6), 2785-2798 [10.1109/TIP.2018.2890312].
A Robust Group-Sparse Representation Variational Method with applications to Face Recognition
Damiana Lazzaro
;Serena Morigi
2019
Abstract
In this paper we propose a Group-Sparse Representation based method with applications to Face Recognition (GSR-FR). The novel sparse representation variational model includes a non-convex sparsity-inducing penalty and a robust non-convex loss function. The penalty encourages group sparsity by using approximation of the ℓ0-quasinorm, and the loss function is chosen to make the algorithm robust to noise, occlusions and disguises. The solution of the non-trivial non-convex optimization problem is efficiently obtained by a majorization-minimization strategy combined with forward-backward splitting, which in particular reduces the solution to a sequence of easier convex optimization sub-problems. Extensive experiments on widely used face databases show the potentiality of the proposed model and demonstrate that the GSR-FR algorithm is competitive with state-of-the-art methods based on sparse representation, especially for very low dimensional feature spaces.File | Dimensione | Formato | |
---|---|---|---|
paper_IEEE_Revised2_20_112018.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.