In this review, I examine the influence of nanoscale materials features on the hydrogen-metal interaction. The small system size, the abundance of surfaces/interfaces, and the spatial distribution of phases are the key factors to understand the hydrogen sorption properties of nanomaterials. In order to describe nanoscale-specific thermodynamic changes, I present a quantitative model applicable to every hydride-forming material, independently on its composition and atomic structure. The effects of surface free energy, interface free energy, and elastic constraint, are included in a general expression for the thermodynamical bias. In the frame of this model, I critically survey theoretical and experimental results hinting at possible changes of thermodynamic parameters, and in particular, enthalpy and entropy of hydride formation, in nanostructured Mg-based metallic compounds as compared to their coarse-grained bulk counterparts. I discuss the still open controversies, such as destabilization of ultra-small clusters and enthalpy–entropy compensation. I also highlight the frequently missed points in experiments and data interpretation, such as the importance of recording full hydrogen absorption and desorption isotherms and of measuring the hysteresis. Finally, I try to address the open questions that may inspire future research, with the ambition of tailoring the properties of hydride nanomaterials through a deeper understanding of their thermodynamics.
Pasquini, L. (2018). The Effects of Nanostructure on the Hydrogen Sorption Properties of Magnesium-Based Metallic Compounds: A Review. CRYSTALS, 8(2), 1-28 [10.3390/cryst8020106].
The Effects of Nanostructure on the Hydrogen Sorption Properties of Magnesium-Based Metallic Compounds: A Review
Pasquini, Luca
Conceptualization
2018
Abstract
In this review, I examine the influence of nanoscale materials features on the hydrogen-metal interaction. The small system size, the abundance of surfaces/interfaces, and the spatial distribution of phases are the key factors to understand the hydrogen sorption properties of nanomaterials. In order to describe nanoscale-specific thermodynamic changes, I present a quantitative model applicable to every hydride-forming material, independently on its composition and atomic structure. The effects of surface free energy, interface free energy, and elastic constraint, are included in a general expression for the thermodynamical bias. In the frame of this model, I critically survey theoretical and experimental results hinting at possible changes of thermodynamic parameters, and in particular, enthalpy and entropy of hydride formation, in nanostructured Mg-based metallic compounds as compared to their coarse-grained bulk counterparts. I discuss the still open controversies, such as destabilization of ultra-small clusters and enthalpy–entropy compensation. I also highlight the frequently missed points in experiments and data interpretation, such as the importance of recording full hydrogen absorption and desorption isotherms and of measuring the hysteresis. Finally, I try to address the open questions that may inspire future research, with the ambition of tailoring the properties of hydride nanomaterials through a deeper understanding of their thermodynamics.File | Dimensione | Formato | |
---|---|---|---|
Pasquini_Crystals_2018.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
7.76 MB
Formato
Adobe PDF
|
7.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.