The bottom tracking (BT) feature of the acoustic Doppler current profilers (ADCP) have emerged as a promising technique in evaluating the bed load. Strong statistical correlations are reported between the ADCP BT velocity and the transport rate obtained by physical sampling or dune tracking; however, these relations are strictly site-specific and a local calibration is necessary. The direct physical sampling is very labor intensive and it is prone to high instrument uncertainty. The aim of this work is to develop a methodology for evaluating the bed load transport using commercial ADCPs without calibration with physical samples. Relatively long stationary measurements were performed in a sand-bed and sand gravel rivers, using three different ADCPs working at 3MHz, 1.2MHz and 0.6MHz. Simultaneously, bed load samples were collected with physical samplers, and the riverbed was closely observed with digital cameras mounted on the samplers. It is demonstrated that the kinematic transport model can yield a relatively good estimate of the transport rate by directly using filtered apparent velocity, the knowledge of the hydraulic conditions and instrument-related calibration coefficients. Additionally, the ADCP data can help in qualitative assessment of the physical sampling. Future investigation of the backscattering echo and further confirmation of the BT apparent velocity should be performed in laboratory-controlled conditions.
Conevski, S., Winterscheid, A., Ruther, N., Guerrero, M., Rennie, C. (2018). Evaluation of an acoustic Doppler technique for bed-load transport measurements in sand-bed Rivers. Les Ulis : EDP Sciences [10.1051/e3sconf/20184002053].
Evaluation of an acoustic Doppler technique for bed-load transport measurements in sand-bed Rivers
Conevski, S.
;Guerrero, M.
;
2018
Abstract
The bottom tracking (BT) feature of the acoustic Doppler current profilers (ADCP) have emerged as a promising technique in evaluating the bed load. Strong statistical correlations are reported between the ADCP BT velocity and the transport rate obtained by physical sampling or dune tracking; however, these relations are strictly site-specific and a local calibration is necessary. The direct physical sampling is very labor intensive and it is prone to high instrument uncertainty. The aim of this work is to develop a methodology for evaluating the bed load transport using commercial ADCPs without calibration with physical samples. Relatively long stationary measurements were performed in a sand-bed and sand gravel rivers, using three different ADCPs working at 3MHz, 1.2MHz and 0.6MHz. Simultaneously, bed load samples were collected with physical samplers, and the riverbed was closely observed with digital cameras mounted on the samplers. It is demonstrated that the kinematic transport model can yield a relatively good estimate of the transport rate by directly using filtered apparent velocity, the knowledge of the hydraulic conditions and instrument-related calibration coefficients. Additionally, the ADCP data can help in qualitative assessment of the physical sampling. Future investigation of the backscattering echo and further confirmation of the BT apparent velocity should be performed in laboratory-controlled conditions.File | Dimensione | Formato | |
---|---|---|---|
Conevski et al._riverflow2018_02053.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
380.7 kB
Formato
Adobe PDF
|
380.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.