Melt-crystallization of poly (butylene 2,6-naphthalate) (PBN) at temperatures lower than about 160 °C follows Ostwald's rule of stages, leading first to formation of a transient smectic liquid crystalline phase (LC) which then may convert in a second step into crystals, controlled by kinetics. In the present work, the PBN melt was cooled at different rates in a fast scanning chip calorimeter to below the glass transition temperature, to obtain different structural states before analysis of the cold-crystallization behavior on heating. It was found that heating of fully amorphous PBN at 1000 K/s leads to a similar two-step crystallization process as on cooling the quiescent melt, with LC-formation occurring slightly above Tg and their transformation into crystals at their stability limit close to 200 °C. In-situ polarized-light optical microscopy provided information that the transition of the LC-phase into crystals on slow heating is not connected with a change of the micrometer-scale superstructure, as the recently found Schlieren texture remains unchanged.
Androsch, R., Soccio, M., Lotti, N., Cavallo, D., Schick, C. (2018). Cold-crystallization of poly(butylene 2,6-naphthalate) following Ostwald's rule of stages. THERMOCHIMICA ACTA, 670, 71-75 [10.1016/j.tca.2018.10.015].
Cold-crystallization of poly(butylene 2,6-naphthalate) following Ostwald's rule of stages
Soccio, Michelina;Lotti, Nadia;
2018
Abstract
Melt-crystallization of poly (butylene 2,6-naphthalate) (PBN) at temperatures lower than about 160 °C follows Ostwald's rule of stages, leading first to formation of a transient smectic liquid crystalline phase (LC) which then may convert in a second step into crystals, controlled by kinetics. In the present work, the PBN melt was cooled at different rates in a fast scanning chip calorimeter to below the glass transition temperature, to obtain different structural states before analysis of the cold-crystallization behavior on heating. It was found that heating of fully amorphous PBN at 1000 K/s leads to a similar two-step crystallization process as on cooling the quiescent melt, with LC-formation occurring slightly above Tg and their transformation into crystals at their stability limit close to 200 °C. In-situ polarized-light optical microscopy provided information that the transition of the LC-phase into crystals on slow heating is not connected with a change of the micrometer-scale superstructure, as the recently found Schlieren texture remains unchanged.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.