Background. Phytoplasmas are insect-transmitted plant pathogenic prokaryotes, associated with severe diseases in agronomic important crops. Management of these diseases has mainly focused on insect vector chemical control and on infected plant rouging. There is therefore a strong need for effective and friendly control strategies for phytoplasma-associated diseases and the possibility to use plasma activated water (PAW) as sustainable and effective method to them was therefore evaluated. PAW is produced by treating distilled water with atmospheric pressure plasmas, inducing the production of reactive oxygen and nitrogen species (RONS) and pH reduction. PAW has good potential for bacterial decontamination, degradation of organic compounds and was shown to positively affect plant growth. Methods. Sterile deionized water (SDW) was exposed to a nanosecond pulsed dielectric barrier discharge, operating in ambient air for 10 min treatment with a peak voltage of 19 kV and a pulse repetition frequency of 1 kHz, which induced production of nitrates, nitrites and peroxides, and a pH decrease. Phytoplasma infected and healthy periwinkles micropropagated shoots were exposed to PAW for about 25 minutes and gene expression studies were then performed. The theses used were: shoots treated with PAW, Fosetyl aluminum (as positive control) and SDW (as negative control), with an exposition of about 25 minutes. Nine shoots for each thesis were then collected at 6 different times after treatment and stored at -80°C. Quantitative RT-PCR analyses were carried out to determine the expression level of genes involved in the plant defense response. Parallel experiments were carried out treating grapevine plants in vineyards previously tested for the phytoplasma presence. Treatments were performed for three years injecting into the plant vascular tissues 10-20 ml of PAW or sterile distilled water (as control) on each selected plant for a total of 60 plants (40 with phytoplasmas and 20 without phytoplasmas). Results. Overexpression of selected genes involved in the phytoalexin metabolism was detected in the periwinkles micropropagated shoots treated with PAW in comparison with the shoots treated with Fosetyl-Al and distilled water. In the field trials, in a relevant number of cases, the PAW-treated symptomatic plants showed reduction of symptoms, while the SDW-treated and untreated plants did not show symptom reduction. No phytotoxicity was observed in the PAW treated grapevine and periwinkle plants. Conclusion. The results obtained showed the capability of PAW to enhance plant defence mechanisms and, as demonstrated in the field trials, confirmed its ability to improve the health status of the treated plants

Transcriptional profiling of phytoplasma infected plants treated with plasma activated water (PAW) / Zambon Y., N. Contaldo, R. Laurita, A. Canel, M. Gherardi, V. Colombo, A. Bertaccini.. - STAMPA. - (2018), pp. 57-57. (Intervento presentato al convegno 22th Congress of the International Organization for Mycoplasmology (IOM) tenutosi a Portsmouth, NH, USA, nel July 9-12, 2018).

Transcriptional profiling of phytoplasma infected plants treated with plasma activated water (PAW).

Zambon Y.
Investigation
;
N. Contaldo
Investigation
;
R. Laurita
Investigation
;
M. Gherardi
Conceptualization
;
V. Colombo
Writing – Review & Editing
;
A. Bertaccini.
Writing – Review & Editing
2018

Abstract

Background. Phytoplasmas are insect-transmitted plant pathogenic prokaryotes, associated with severe diseases in agronomic important crops. Management of these diseases has mainly focused on insect vector chemical control and on infected plant rouging. There is therefore a strong need for effective and friendly control strategies for phytoplasma-associated diseases and the possibility to use plasma activated water (PAW) as sustainable and effective method to them was therefore evaluated. PAW is produced by treating distilled water with atmospheric pressure plasmas, inducing the production of reactive oxygen and nitrogen species (RONS) and pH reduction. PAW has good potential for bacterial decontamination, degradation of organic compounds and was shown to positively affect plant growth. Methods. Sterile deionized water (SDW) was exposed to a nanosecond pulsed dielectric barrier discharge, operating in ambient air for 10 min treatment with a peak voltage of 19 kV and a pulse repetition frequency of 1 kHz, which induced production of nitrates, nitrites and peroxides, and a pH decrease. Phytoplasma infected and healthy periwinkles micropropagated shoots were exposed to PAW for about 25 minutes and gene expression studies were then performed. The theses used were: shoots treated with PAW, Fosetyl aluminum (as positive control) and SDW (as negative control), with an exposition of about 25 minutes. Nine shoots for each thesis were then collected at 6 different times after treatment and stored at -80°C. Quantitative RT-PCR analyses were carried out to determine the expression level of genes involved in the plant defense response. Parallel experiments were carried out treating grapevine plants in vineyards previously tested for the phytoplasma presence. Treatments were performed for three years injecting into the plant vascular tissues 10-20 ml of PAW or sterile distilled water (as control) on each selected plant for a total of 60 plants (40 with phytoplasmas and 20 without phytoplasmas). Results. Overexpression of selected genes involved in the phytoalexin metabolism was detected in the periwinkles micropropagated shoots treated with PAW in comparison with the shoots treated with Fosetyl-Al and distilled water. In the field trials, in a relevant number of cases, the PAW-treated symptomatic plants showed reduction of symptoms, while the SDW-treated and untreated plants did not show symptom reduction. No phytotoxicity was observed in the PAW treated grapevine and periwinkle plants. Conclusion. The results obtained showed the capability of PAW to enhance plant defence mechanisms and, as demonstrated in the field trials, confirmed its ability to improve the health status of the treated plants
2018
22th Congress of the International Organization for Mycoplasmology (IOM)
57
57
Transcriptional profiling of phytoplasma infected plants treated with plasma activated water (PAW) / Zambon Y., N. Contaldo, R. Laurita, A. Canel, M. Gherardi, V. Colombo, A. Bertaccini.. - STAMPA. - (2018), pp. 57-57. (Intervento presentato al convegno 22th Congress of the International Organization for Mycoplasmology (IOM) tenutosi a Portsmouth, NH, USA, nel July 9-12, 2018).
Zambon Y., N. Contaldo, R. Laurita, A. Canel, M. Gherardi, V. Colombo, A. Bertaccini.
File in questo prodotto:
File Dimensione Formato  
Zambon et al IOM 2018ok.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 252.94 kB
Formato Adobe PDF
252.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/661606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact