In recent years, research efforts have focused on the development of safe and efficient H2 generation/storage materials toward a fuel-cell-based H2 economy as a long-term solution in the near future. Herein, we report the development of Pd nanoparticles supported on carbon nanofibers (CNFs) via sol-immobilisation and impregnation techniques. Thorough characterisation has been carried out by means of XRD, XPS, SEM-EDX, TEM, and BET. The catalysts have been evaluated for the catalytic decomposition of formic acid (HCOOH), which has been identified as a safe and convenient H2 carrier under mild conditions. The influence of preparation method was investigated and catalysts prepared by the sol-immobilisation method showed higher catalytic performance (PdSI/CNF) than their analogues prepared by the impregnation method (PdIMP/CNF). A high turnover frequency (TOF) of 979 h−1 for PdSI/CNF and high selectivity (>99.99%) was obtained at 30 °C for the additive-free formic acid decomposition. Comparison with a Pd/AC (activated charcoal) catalyst synthesised with sol-immobilisation method using as a support activated charcoal (AC) showed an increase of catalytic activity by a factor of four, demonstrating the improved performance by choosing CNFs as the preferred choice of support for the deposition of preformed colloidal Pd nanoparticles

Felipe Sanchez, D.M. (2018). Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition. C, 4, 26-42 [10.3390/c4020026].

Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition

Stefania Albonetti;Nikolaos Dimitratos
2018

Abstract

In recent years, research efforts have focused on the development of safe and efficient H2 generation/storage materials toward a fuel-cell-based H2 economy as a long-term solution in the near future. Herein, we report the development of Pd nanoparticles supported on carbon nanofibers (CNFs) via sol-immobilisation and impregnation techniques. Thorough characterisation has been carried out by means of XRD, XPS, SEM-EDX, TEM, and BET. The catalysts have been evaluated for the catalytic decomposition of formic acid (HCOOH), which has been identified as a safe and convenient H2 carrier under mild conditions. The influence of preparation method was investigated and catalysts prepared by the sol-immobilisation method showed higher catalytic performance (PdSI/CNF) than their analogues prepared by the impregnation method (PdIMP/CNF). A high turnover frequency (TOF) of 979 h−1 for PdSI/CNF and high selectivity (>99.99%) was obtained at 30 °C for the additive-free formic acid decomposition. Comparison with a Pd/AC (activated charcoal) catalyst synthesised with sol-immobilisation method using as a support activated charcoal (AC) showed an increase of catalytic activity by a factor of four, demonstrating the improved performance by choosing CNFs as the preferred choice of support for the deposition of preformed colloidal Pd nanoparticles
2018
C
Felipe Sanchez, D.M. (2018). Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition. C, 4, 26-42 [10.3390/c4020026].
Felipe Sanchez , Davide Motta , Ludovica Bocelli , Stefania Albonetti , Alberto Roldan, Ceri Hammond, Alberto Villa, Nikolaos Dimitratos
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/661594
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact