On the example of 2-, 4- and 2,4-thiouracil we demonstrate the performance of the RASPT2/RASSCF protocol in reproducing the spectral positions and line shapes of linear absorption spectra that have been recorded in water and documented in this work. Through a QM/MM scheme coupled to a room-temperature Wigner sampling we simulate condensed phase spectra, permitting to compare our results against experiments. We discuss the sensitivity of the simulations to: a) the active space size by pushing the limits beyond the full-valence active spaces; b) the consideration of “dark” nπ∗-states in the state averaging; c) the flavor of RASPT2 technique; d) the basis set. The benchmarking demonstrates that full-π valence active spaces tend to red-shift the absorption band. Increasing the active space rectifies the problem and we obtain near-quantitative agreement between our experiments and calculations. We, furthermore, demonstrate that the choice of RASPT2 flavor has to be made through rigorous benchmarking.
Nenov, A., Conti, I., Borrego-Varillas, R., Cerullo, G., Garavelli, M. (2018). Linear absorption spectra of solvated thiouracils resolved at the hybrid RASPT2/MM level. CHEMICAL PHYSICS, 515, 643-653 [10.1016/j.chemphys.2018.07.025].
Linear absorption spectra of solvated thiouracils resolved at the hybrid RASPT2/MM level
Nenov, Artur;Conti, Irene;Garavelli, Marco
2018
Abstract
On the example of 2-, 4- and 2,4-thiouracil we demonstrate the performance of the RASPT2/RASSCF protocol in reproducing the spectral positions and line shapes of linear absorption spectra that have been recorded in water and documented in this work. Through a QM/MM scheme coupled to a room-temperature Wigner sampling we simulate condensed phase spectra, permitting to compare our results against experiments. We discuss the sensitivity of the simulations to: a) the active space size by pushing the limits beyond the full-valence active spaces; b) the consideration of “dark” nπ∗-states in the state averaging; c) the flavor of RASPT2 technique; d) the basis set. The benchmarking demonstrates that full-π valence active spaces tend to red-shift the absorption band. Increasing the active space rectifies the problem and we obtain near-quantitative agreement between our experiments and calculations. We, furthermore, demonstrate that the choice of RASPT2 flavor has to be made through rigorous benchmarking.File | Dimensione | Formato | |
---|---|---|---|
Nenov_et_al_2018_ChemPhys.pdf
accesso riservato
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso riservato
Dimensione
2.71 MB
Formato
Adobe PDF
|
2.71 MB | Adobe PDF | Visualizza/Apri Contatta l'autore |
ChemPhys_Thiouracil.pdf
accesso aperto
Descrizione: Post-print
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
7.3 MB
Formato
Adobe PDF
|
7.3 MB | Adobe PDF | Visualizza/Apri |
ChemPhys_Thiouracil_SI.pdf
accesso aperto
Descrizione: Suplementary Information
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
445.35 kB
Formato
Adobe PDF
|
445.35 kB | Adobe PDF | Visualizza/Apri |
661463_postprint.pdf
Open Access dal 15/11/2019
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF | Visualizza/Apri |
661463_Linear absorption_SI.pdf
Open Access dal 15/11/2019
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
449.11 kB
Formato
Adobe PDF
|
449.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.