Several investigations at a single-cell level demonstrated that the medial posterior parietal area V6A is involved in encoding reaching and grasping actions in different visual conditions. Here, we looked for a "low-dimensional" representation of these encoding processes by studying macaque V6A neurons tested in three different tasks with a dimensionality reduction technique, the demixed principal component analysis (dPCA), which is very suitable for neuroprosthetics readout. We compared neural activity in reaching and grasping tasks by highlighting the portions of population variance involved in the encoding of visual information, target position, wrist orientation and grip type. The weight of visual information and task parameters in the encoding process was dependent on the task. We found that the distribution of variance captured by visual information in the three tasks did not differ significantly among the tasks, whereas the variance captured by target position and grip type parameters were significantly higher with respect to that captured by wrist orientation regardless of the number of conditions considered in each task. These results suggest a different use of relevant information according to the type of planned and executed action. This study shows a simplified picture of encoding that describes how V6A processes relevant information for action planning and execution.

Reduced neural representation of arm/hand actions in the medial posterior parietal cortex

Bosco, A;Breveglieri, R;Filippini, M;Galletti, C;Fattori, P
2019

Abstract

Several investigations at a single-cell level demonstrated that the medial posterior parietal area V6A is involved in encoding reaching and grasping actions in different visual conditions. Here, we looked for a "low-dimensional" representation of these encoding processes by studying macaque V6A neurons tested in three different tasks with a dimensionality reduction technique, the demixed principal component analysis (dPCA), which is very suitable for neuroprosthetics readout. We compared neural activity in reaching and grasping tasks by highlighting the portions of population variance involved in the encoding of visual information, target position, wrist orientation and grip type. The weight of visual information and task parameters in the encoding process was dependent on the task. We found that the distribution of variance captured by visual information in the three tasks did not differ significantly among the tasks, whereas the variance captured by target position and grip type parameters were significantly higher with respect to that captured by wrist orientation regardless of the number of conditions considered in each task. These results suggest a different use of relevant information according to the type of planned and executed action. This study shows a simplified picture of encoding that describes how V6A processes relevant information for action planning and execution.
Bosco, A; Breveglieri, R; Filippini, M; Galletti, C; Fattori, P
File in questo prodotto:
File Dimensione Formato  
Bosco et al., 2019.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri
41598_2018_37302_MOESM1_ESM.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 284.77 kB
Formato Adobe PDF
284.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/660169
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact